Production of Reactive Oxygen Species by Genetically Encoded Photosensitizers 4D5scFv-miniSOG and DARPin-miniSOG in Living Cells

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Currently, experimental oncology is developing approaches based on the development of targeted photosensitizers that can be delivered specifically to a tumor of a certain molecular profile. This work is devoted to the study of the generation of reactive oxygen species by photosensitizers of protein nature 4D5scFv-miniSOG and DARPin-miniSOG, specific to the oncomarker HER2. It was found that despite the presence of the same phototoxic module in their composition, these photosensitizers are characterized by different levels of ROS production, which may be explained by the different rate of receptor-mediated internalization of 4D5scFv-miniSOG and DARPin-miniSOG.

作者简介

G. Proshkina

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: gmb@ibch.ru
Russia, 117997, Moscow

E. Shramova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: gmb@ibch.ru
Russia, 117997, Moscow

S. Deyev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: gmb@ibch.ru
Russia, 117997, Moscow; Russia, 119991, Moscow

参考

  1. Dougherty T.J., Kaufman J.E., Goldfarb A., Weishaupt K.R., Boyle D., Mittleman A. 1978. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 38 (8), 2628–2635.
  2. Castano A.P., Mroz P., Hamblin M.R. 2006. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 6 (7), 535–545.
  3. Slamon D.J., Clark G.M., Wong S.G., Levin W.J., Ullrich A., McGuire W.L. 1987. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 235 (4785), 177–182.
  4. Gusterson B.A., Gelber R.D., Goldhirsch A., Price K.N., Save-Soderborgh J., Anbazhagan R., Styles J., Rudenstam C.M., Golouh R., Reed R. 1992. Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group. J. Clin. Oncol. 10 (7), 1049–1056.
  5. Bulina M.E., Chudakov D.M., Britanova O.V., Yanushevich Y.G., Staroverov D.B., Chepurnykh T.V., Merzlyak E.M., Shkrob M.A., Lukyanov S., Lukyanov K.A. 2006. A genetically encoded photosensitizer. Nat. Biotechnol. 24 (1), 95–99.
  6. Shu X., Lev-Ram V., Deerinck T.J., Qi Y., Ramko E.B., Davidson M.W., Jin Y., Ellisman M.H., Tsien R.Y. 2011. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9 (4), e1001041.
  7. Serebrovskaya E.O., Edelweiss E.F., Stremovskiy O.A., Lukyanov K.A., Chudakov D.M., Deyev S.M. 2009. Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein. Proc. Natl. Acad. Sci. USA. 106 (23), 9221–9225.
  8. Shipunova V.O., Deyev S.M. 2022. Artificial scaffold polypeptides as an efficient tool for the targeted delivery of nanostructures in vitro and in vivo. Acta Naturae. 14 (1), 54–72.
  9. Tolmachev V.M., Chernov V.I., Deyev S.M. 2022. Targeted nuclear mediine. Seek and destroy. Russ. Chem. Rev. 91, RCR5034. https://doi.org/10.1070/RCR5034
  10. Shramova E.I., Chumakov S.P., Shipunova V.O., Ryabova A.V., Telegin G.B., Kabashin A.V., Deyev S.M., Proshkina G.M. 2022. Genetically encoded BRET-activated photodynamic therapy for the treatment of deep-seated tumors. Light Sci. Appl. 11 (1), 38.
  11. Zhai Y., Huang X., Zhang K., Huang Y., Jiang Y., Cui J., Zhang Z., Chiu C.K.C., Zhong W., Li G. 2022. Spatiotemporal-resolved protein networks profiling with photoactivation dependent proximity labeling. Nat. Commun. 13 (1), 4906.
  12. Mironova K.E., Proshkina G.M., Ryabova A.V., Stremovskiy O.A., Lukyanov S.A., Petrov R.V., Deyev S.M. 2013. Genetically encoded immunophotosensitizer 4D5scFv-miniSOG is a highly selective agent for targeted photokilling of tumor cells in vitro. Theranostics. 3 (11), 831–840.
  13. Proshkina G.M., Shilova O.N., Ryabova A.V., Stremovskiy O.A., Deyev S.M. 2015. A new anticancer toxin based on HER2/neu-specific DARPin and photoactive flavoprotein miniSOG. Biochimie. 118, 116–122.
  14. Worn A., Plückthun A. 2001. Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305 (5), 989–1010.
  15. Binz H.K., Amstutz P., Kohl A., Stumpp M.T., Briand C., Forrer P., Grutter M.G., Plückthun A. 2004. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol. 22 (5), 575–582.
  16. Studier F.W. 2014. Stable expression clones and auto-induction for protein production in E. coli. Methods Mol. Biol. 1091, 17–32.
  17. Subik K., Lee J.F., Baxter L., Strzepek T., Costello D., Crowley P., Xing L., Hung M.C., Bonfiglio T., Hicks D.G., Tang P. 2010. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl). 4, 35–41.
  18. Кузичкина Е.О., Шилова О.Н., Деев С.М. 2018. Механизм тушения флуоресценции белковых фотосенсибилизаторов на основе miniSOG в процессе интернализации рецептора HER2. Acta Naturae. 10 (4), 87–94.
  19. Шилова О.Н., Прошкина Г.М., Лебеденко Е.Н., Деев С.М. 2015. Интернализация и рециркуляция рецептора HER2 при взаимодействии адресного фототоксичного белка DARPin-miniSOG с клетками аденокарциномы молочной железы человека. Acta Naturae. 7 (3), 141–148.
  20. Girotti A.W. 2001. Photosensitized oxidation of membrane lipids: Reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J. Photochem. Photobiol. B. 63 (1–3), 103–113.
  21. Finkel T. 2011. Signal transduction by reactive oxygen species. J. Cell Biol. 194 (1), 7–15.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (222KB)

版权所有 © The Russian Academy of Sciences, 2023