Sensors of Intracellular Nucleic Acids Activating STING-Dependent Production of Interferons in Immunocompetent Cells
- 作者: Smolyaninova L.V.1, Solopova O.N.1
-
隶属关系:
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology
- 期: 卷 41, 编号 1 (2024)
- 页面: 3-23
- 栏目: ОБЗОРЫ
- URL: https://vietnamjournal.ru/0233-4755/article/view/667466
- DOI: https://doi.org/10.31857/S0233475524010015
- EDN: https://elibrary.ru/ztzoee
- ID: 667466
如何引用文章
详细
Currently, foreign DNA or RNA sensor proteins, which play an important role in innate immunity, are of great interest as a new avenue for cancer immunotherapy. Agonists of these proteins can activate signaling cascades in immune cells that cause the production of cytokines, in particular type I interferons, which have a powerful cytotoxic effect. This review examines the functioning of cytoplasmic nucleic acid sensors such as cGAS, STING, IFI16, AIM2, DAI, DDX41, DNA-PK, MRE-11, and TREX1 involved in activating the production of various cytokines.
关键词
全文:

作者简介
L. Smolyaninova
Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology
Email: smolyaninovalarisa1@gmail.com
俄罗斯联邦, Moscow, 115478
O. Solopova
Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology
编辑信件的主要联系方式.
Email: smolyaninovalarisa1@gmail.com
俄罗斯联邦, Moscow, 115478
参考
- Zahid A., Ismail H., Li B., Jin T. 2020. Molecular and structural basis of DNA sensors in antiviral innate immunity. Front Immunol. 11, 613039. https://doi.org/10.3389/fimmu.2020.613039
- Bartok E., Hartmann G. 2020. Immune sensing mechanisms that discriminate self from altered self and foreign nucleic acids. Immunity. 53 (1), 54–77. https://doi.org/0.1016/j.immuni.2020.06.014
- Ablasser A., Hur S. 2020. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat. Immunol. 21, 17–29. doi: 10.1038/s41590–019–0556–1
- Jiang M., Chen P., Wang L., Li W., Chen B., Liu Y., Wang H., Zhao S., Ye L., He Y., Zhou C. 2020. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol. 13, 81. https://doi.org/10.1186/s13045–020–00916-z
- Zhou J., Zhuang Z., Li J., Feng Z. 2023. Significance of the cGAS-STING pathway in health and disease. Int. J. Mol. Sci. 24 (17), 13316. https://doi.org/10.3390/ijms241713316
- Chen Q., Sun L., Chen Z.J. 2016. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat. Immunol., 17, 1142–1149. https://doi.org/10.1038/ni.3558
- Li Q., Tian S., Liang J., Fan J., Lai J., Chen Q. 2021. Therapeutic development by targeting the cGAS-STING Pathway in autoimmune disease and cancer. Front. Pharmacol. 12, 779425. https://doi.org/10.3389/fphar.2021.779425
- Zhang D., Liu Y., Zhu Y., Zhang Q., Guan H., Liu S., Chen S., Mei C., Chen C., Liao Z., Xi Y., Ouyang S., Feng X.-H., Liang T., Shen L., Xu P. 2022. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat. Cell Biol. 24 (5), 766–782. https://doi.org/ 10.1038/s41556–022–00894-z
- Sun L., Wu J., Du F., Chen X., Chen Z.J. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 339, 786–791. https://doi.org/10.1126/science.1232458
- Wu X., Wu F.-H., Wang X., Wang L., Siedow J.N., Zhang W., Pei Z.-M. 2014. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. 42 (13), 8243–8257. https://doi.org/10.1093/nar/gku569
- Zhou W., Whiteley A.T., de Oliveira Mann C.C., Morehouse B.R., Nowak R.P., Fischer E.S., Gray N.S., Mekalanos J.J., Kranzusch P.J. 2018. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell. 174 (2), 300–311, e11. https://doi.org/10.1016/j.cell.2018.06.026
- Wang D., Zhao H., Shen Y., Chen Q. 2022. A variety of nucleic acid species are sensed by cGAS, implications for its diverse functions. Front. Immunol. 13, 826880. https://doi.org/ 10.3389/fimmu.2022.826880
- Wu J., Sun L., Chen X., Du F., Shi H., Chen C., Chen Z.J. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 339 (6121), 826–830. https://doi.org/ 10.1126/science.1229963
- HerznerA.-M., Hagmann C.A., Goldeck M., Wolter S., Kübler K., Wittmann S., Gramberg T., Andreeva L., Hopfner K.-P. Mertens C., Zillinger T., Jin T., Xiao T.S., Bartok E., Coch C., Ackermann D., Hornung V., Ludwig J., Barchet W., Hartmann G., Schlee M. 2015. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat. Immunol. 16 (10), 1025–1033. https://doi.org/10.1038/ni.3267
- Gentili M., Kowal J., Tkach M., Satoh T., Lahaye X., Conrad C., Boyron M., Lombard B., Durand S., Kroemer G., Loew D., Dalod M., Théry C., Manel N. 2015. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science. 349 (6253),1232–1236. https://doi.org/10.1126/science.aab3628
- Zhang X., Wu J., Du F., Xu H., Sun L., Chen Z., Brautigam C.A, Zhang X., Chen Z.J. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 6 (3), 421–430. https://doi.org/10.1016/j.celrep.2014.01.003
- Li X., Shu C., Yi G., Chaton C.T., Shelton C.L., Diao J., Zuo X., Kao C.C., Herr A.B., Li P. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 39(6), 1019–1031. https://doi.org/10.1016/j.immuni.2013.10.019
- Kranzusch P. J., Lee A.S.-Y., Berger J.M., Doudna J.A. 2013. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3 (5), 1362–1368. https://doi.org/10.1016/j.celrep.2013.05.008
- HuérfanoS., Šroller V., Bruštíková K, Horníková L, Forstová J. 2022. The interplay between viruses and host DNA sensors. Viruses. 14 (4), 666. https://doi.org/10.3390/v14040666
- Yoh S. M., Schneider M., Seifried J., Soonthornvacharin S., Akleh R.E., Olivieri K.C., De Jesus P.D., Ruan C., de Castro E., Ruiz P.A., Germanaud D., des Portes V., García-Sastre A., König R., Chanda S.K. 2015. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell. 161 (6),1293–1305. https://doi.org/10.1016/j.cell.2015.04.050
- Seo G. J., Yang A., Tan B., Kim S., Liang Q., Choi Y., Yuan W., Feng P., Park H.-S., Jung J.U. 2015. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep. 13 (2), 440–449. https://doi.org/10.1016/j.celrep.2015.09.007
- Xia P., Ye B., Wang S., Zhu X., Du Y., Xiong Z., Tian Y., Fan Z. 2016. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol. 17 (4), 369–378. https://doi.org/10.1038/ni.3356
- Jiang H., Xue X., Panda S., Kawale A., Hooy R.M., Liang F., Sohn J., Sung P., Gekara N.O. 2019. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 38 (21), e102718. https://doi.org/10.15252/embj.2019102718
- Michalski S., Mann C.C. de O., Stafford C.A., Witte G., Bartho J., Lammens K., Hornung V., Hopfner K.-P. Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature. 587 (7835), 678–682. https://doi.org/ 10.1038/s41586–020–2748–0
- Zhou S., Su T., Cheng F., Cole J., Liu X., Zhang B., Alam S., Liu J., Zhu G. 2023. Engineering cGAS-agonistic oligonucleotides as therapeutics and vaccine adjuvants for cancer immunotherapy. bioRxiv, 2023.07.13.548237. https://doi.org/10.1101/2023.07.13.548237. Preprint
- Ishikawa H., Barber G.N. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signaling. Nature. 455, 674–678. https://doi.org/10.1038/nature07317
- Hussain B., Xie Y., Jabeen U., Lu D., Yang B., Wu C., Shang G. 2022.Activation of STING based on its structural features. Front. Immunol. 13, 808607. https://doi.org/10.3389/fimmu.2022.808607
- Zhang X., Shi H., Wu J., Zhang X., Sun L., Chen C., Chen Z.J. 2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell. 51, 226–235. https://doi.org/10.1016/j.molcel.2013.05.022
- Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., Matsushita K., Hiiragi A., Dermody T.S., Fujita T., Akira S. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5. J. Exp. Med. 205 (7), 1601–1610. https://doi.org/10.1084/jem.20080091
- Shang G., Zhang C., Chen Z.J., Bai X.-C., Zhang X. 2019. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature. 567, 389–393. https://doi.org/10.1038/s41586–019–0998–5
- Mukai K., Konno H., Akiba T., Uemura T., Waguri S., Kobayashi T., Barber G.N., Arai H., Taguchi T. 2016. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932. https://doi.org/10.1038/ncomms11932
- Liu S., Cai X., Wu J., Cong Q., Chen X., Li T., Du F., Ren J., Wu Y.-T., Grishin N.V., Chen Z.J. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 347 (6227), eaat8657. https://doi.org/10.1126/science.aaa2630
- Agalioti T., Lomvardas S., Parekh B., Yie J., Maniatis T., Thanos D. 2000. Ordered recruitment of chromatin modifying and general transcription factors to the IFNb promoter. Cell. 103 (4), 667–678. https://doi.org/10.1016/S0092–8674(00)00169–0
- Zhang J., Hu M.M., Wang Y.Y., Shu H.B. 2012. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J. Biol. Chem. 287, 28646–28655
- Tsuchida T., Zou J., Saitoh T., Kumar H., Abe T., Matsuura Y., Kawai T., Akira S. 2010. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776. https://doi.org/10.1016/j.immuni.2010.10.013
- Zhong B., Zhang L., Lei C., Li Y., Mao A.-P., Yang Y., Wang Y.-Y., Zhang X.-L., Shu H.-B. 2009. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity. 30, 397–407. https://doi.org/10.1016/j.immuni.2009.01.008
- Wang Y., Lian Q., Yang B., Yan S., Zhou H., He L., Lin G., Lian Z., Jiang Z., Sun B. 2015. TRIM30a is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathog. 11, e1005012. https://doi.org/10.1371/journal.ppat.1005012
- Ishikawa H., Barber G.N. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signaling. Nature. 455 (7213), 674–678. https://doi.org/10.1038/nature07317
- Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., Matsumoto M., Hoshino K., Wagner H., Takeda K., Akira S. 2000. A Toll-like receptor recognizes bacterial DNA. Nature. 408, 740–745
- Abe T., Harashima A., Xia T., Konno H., Konno K., Morales A., Ahn J., Gutman D., Barber G.N. 2013. STING recognition of cytoplasmic DNA instigates cellular defense. Mol. Cell. 50 (1), 5–15. https://doi.org/10.1016/j.molcel.2013.01.039
- Demaria O., Gassart A.D., Coso S., Gestermann N., Di Domizio J., Flatz L., Gaide O., Michielin O., Hwu P., Petrova T.V., Martinon F., Modlin R.L., Speiser D.E., Gilliet M. 2015. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl. Acad. Sci. USA. 112 (50), 15408–15413. https://doi.org/10.1073/pnas.1512832112
- Padovan E., Spagnoli G.C., Ferrantini M., Heberer M. 2002. IFN-α2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells. J. Leukoc. Biol. 71 (4), 669–676. https://doi.org/10.1189/jlb.71.4.669
- Glickman L. H., Kanne D.B., Kasibhatla S., Li J., Pferdekamper A.M.C., Gauthier K.S., Deng W., Desbien A.L., Katibah G.E., Leong J.J., Sung L., Metchette K., Ndubaku C., Zheng L., Cho C., Feng Y., McKenna J.M., Tallarico J.A., Bender S.L., Dubensky T.W., McWhirter S.M. 2016. STING activation in the tumor microenvironment with a synthetic human STING-activating cyclic dinucleotide leads to potent anti-tumor immunity. Cancer Res. 76 (14_Supplement), 1445. https://doi.org/10.1158/1538–7445.AM2016–1445
- Sivick K. E., Desbien A.L., Glickman L.H., Reiner G.L., Corrales L., Surh N.H., Hudson T.E., Vu U.T., Francica B.J., Banda T., Katibah G.E., Kanne D.B., Leong J.J., Metchette K., Bruml J.R., Ndubaku C.O., McKenna J.M., Feng Y., Zheng L., Bender S.L., Cho C.Y., Leong M.L., van Elsas A., Dubensky Jr.T.W., McWhirter S.M. 2018. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep. 25, 3074–3085. https://doi.org/10.1016/j.celrep.2018.11.047
- Meric-Bernstam F., Sweis R.F., Hodi F.S., Messersmith W.A., Andtbacka R.H.I., Ingham M., Lewis N., Chen X., Pelletier M., Chen X., Wu J., Dubensky T.W., McWhirter S.M., Muller T., Nitya N., Jason J.L. 2022. Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/ metastatic solid tumors or lymphomas. Clin. Cancer Res. 28, 677–688. https://doi.org/10.1158/1078–0432.CCR-21–1963
- Adli A. D.F., Jahanban-Esfahlan R., Seidi K., Samandari-Rad S., Zarghami N. 2018. An overview on Vadimezan (DMXAA), the vascular disrupting agent. Chem. Biol. Drug Des. 91 (5), 996–1006. https://doi.org/10.1111/cbdd.13166
- Ramanjulu J. M., Pesiridis G.S., Yang J., Concha N., Singhaus R., Zhang S.-Y., et al. 2018. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature. 564 (7736), 439–443. https://doi.org/10.1038/s41586–018–0705-y
- Liu J., Huang X., Ding J. 2021. Identification of MSA-2: An oral antitumor non-nucleotide STING agonist. Signal Transduct. Target. Ther. 6, 18. https://doi.org/10.1038/s41392–020–00459–2
- Jakobsen M. R., Bak R.O., Andersen A., Berg R.K., Jensen S.B., Jin T., Laustsen A., Hansen K., Ostergaard L., Fitzgerald K.A., Xiao T.S., Mikkelsen J.G., Mogensen T.H., Paludan S.R. 2013. IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc. Natl. Acad. Sci. USA. 110 (48), E4571–E4580. https://doi.org/10.1073/pnas.1311669110
- Kerur N., Veettil M.V., Sharma-Walia N., Bottero V., Sadagopan S., Otageri P., Chandran B. 2011. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host Microbe. 9 (5), 363–375. https://doi.org/10.1016/j.chom.2011.04.008
- Fan X., Jiang J., Zhao D., Chen F., Ma H., Smith P., Unterholzner L., Xiao T.S., Jin T. 2021. Structural mechanism of DNA recognition by the p204 HIN domain. Nucleic Acids Research, 49 (5), 2959–2972. https://doi.org/10.1093/nar/gkab076
- Morrone S. R., Wang T., Constantoulakis L.M., Hooy R.M., Delannoy M.J., Sohn J. 2014. Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Proc. Natl. Acad. Sci. USA. 111 (1), E62–E71. https://doi.org/10.1073/pnas.1313577111
- Stratmann S. A., Morrone S.R., van Oijen A.M., Sohn J. 2015. The innate immune sensor IFI16 recognizes foreign DNA in the nucleus by scanning along the duplex. Elife. 4, e11721. https://doi.org/10.7554/eLife.1172
- Ni X., Ru H., Ma F., Zhao L., Shaw N., Feng Y., Ding W., Gong W., Wang Q., Ouyang S., Cheng G., Liu Z.-J. 2016. New insights into the structural basis of DNA recognition by HINa and HINb domains of IFI16. J. Mol. Cell Biol. 8 (1), 51–61. https://doi.org/10.1093/jmcb/mjv053
- Unterholzner L., Keating S.E., Baran M., Horan K.A., Jensen S.B., Sharma S., Sirois C.M., Jin T., Latz E., Xiao T.S., Fitzgerald K.A., Paludan S.R., Bowie A.G. 2010. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004. https://doi.org/10.1038/ni.1932
- Jin T., Perry A., Jiang J., Smith P., Curry J.A., Unterholzner L., Jiang Z., Horvath G., Rathinam V.A., Johnstone R.W., Hornung V., Latz E., Bowie A.G., Fitzgerald K.A., Xiao T.S. 2012. Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity. 36 (4), 561–571. https://doi.org/10.1016/j.immuni.2012.02.014
- Ru H., Ni X., Zhao L., Crowley C., Ding W., Hung L.-W., Shaw N., Cheng G., Liu Z.-J. 2013. Structural basis for termination of AIM2-mediated signaling by p202. Cell Res. 23 (6), 855–858. https://doi.org/10.1038/cr.2013.52
- Buenrostro J. D., Giresi P.G., Zaba L.C., Chang H.Y., Greenleaf W.J. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods. 10 (12), 1213–1218. https://doi.org/10.1038/nmeth.2688
- Lum K. K., Howard T.R., Pan C., Cristea I.M. 2019. Charge-mediated pyrin oligomerization nucleates antiviral IFI16 sensing of herpesvirus DNA. mBio. 10 (4), e01428–19. https://doi.org/10.1128/mBio.01428–19
- Doitsh G., Galloway N.L.K., Geng X., Yang Z., Monroe K.M., Zepeda O., Hunt P.W., Hatano H., Sowinski S., Muñoz-Arias I., Greene W.C. 2014. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 505 (7484), 509–514. https://doi.org/10.1038/nature12940
- Jønsson K., Laustsen A., Krapp C., Skipper K., Thavachelvam K., Hotter D., Egedal J.H., Kjolby M., Mohammadi P., Prabakaran T., Sørensen L.K., Sun C., Jensen S.B., Holm C.K., Lebbink R.J., Johannsen M., Nyegaard M., Mikkelsen J.G., Kirchhoff F., Paludan S.R., Jakobsen M.R. 2017. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat. Commun. 8, 14391. https://doi.org/10.1038/ncomms14391
- Rathinam V. A., Jiang Z., Waggoner S.N., Sharma S., Cole L.E., Waggoner L., Vanaja S.K., Monks B.G., Ganesan S., Latz E., Hornung V., Vogel S.N., Szomolanyi-Tsuda E., Fitzgerald K.A. 2010. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11 (5), 395. https://doi.org/10.1038/ni.1864
- Hauenstein A. V., Zhang L., Wu H. 2015. The hierarchical structural architecture of inflammasomes, supramolecular inflammatory machines. Curr. Opin. Struct. Biol. 31, 75–83. https://doi.org/10.1016/j.sbi.2015.03.014
- Sharma M., de Alba E. 2021. Structure, activation and regulation of NLRP3 and AIM2 inflammasomes. Int. J. Mol. Sci. 22 (2), 872. https://doi.org/10.3390/ijms22020872
- Morrone S. R., Matyszewski M., Yu X., Delannoy M., Egelman E.H., Sohn J. 2015. Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a polymerization template for downstream ASC. Nat. Commun. 6, 7827. https://doi.org/10.1038/ncomms8827
- Lu A., Li Y., Yin Q., Ruan J., Yu X., Egelman E., Wu H. 2015. Plasticity in PYD assembly revealed by cryo-EM structure of the PYD filament of AIM2. Cell Discovery. 1, 15013. https://doi.org/10.1038/celldisc.2015.13
- Hornung V., Ablasser A., Charrel-Dennis M., Bauernfeind F., Horvath G., Caffrey D.R., Latz E., Fitzgerald K.A. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 458, 514–518.
- Panchanathan R., Duan X., Shen H., Rathinam V.A.K., Erickson L.D., Fitzgerald K.A., Choubey D. 2010. Aim2 deficiency stimulates the expression of IFN-inducible Ifi202, a lupus susceptibility murine gene within the Nba2 autoimmune susceptibility locus. J. Immunol.185 (12), 7385–7393. https://doi.org/10.4049/jimmunol.1002468
- Corrales L., Woo S.-R., Williams J.B., McWhirter S.M., Dubensky Jr T.W., Gajewski T.F. 2016. Antagonism of the STING pathway via activation of the AIM2 inflammasome by intracellular DNA. J. Immunol. 196 (7), 3191–3198. https://doi.org/10.4049/jimmunol.1502538
- Mayer-Barber K.D., Andrade B.B., Oland S.D., Amaral E.P., Barber D.L., Gonzales J., Derrick S.C., Shi R., Kumar N.P., Wei W., Yuan X., Zhang G., Cai Y., Babu S., Catalfamo M., Salazar A.M., Via L.E., Barry 3rd C.E., Sher A. 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 511 (7507), 99–103. https://doi.org/10.1038/nature13489
- Takaoka A., Wang Z., Choi M.K., Yanai H., Negishi H., Ban T., Lu Y., Miyagishi M., Kodama T., Honda K., Ohba Y., Taniguchi T. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 448, 501–505. https://doi.org/10.1038/nature06013
- Deigendesch N., Koch-Nolte F., Rothenburg S. 2006. ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains. Nucleic Acids Res. 34 (18), 5007–5020. https://doi.org/10.1093/nar/gkl575
- Ha S. C., Quyen D.V., Hwang H.-Y., Oh D.-B., Brown 2nd B.A., Lee S.M., Park H.-J., Ahn J.-H., Kim K.K., Kim Y.-G. 2006. Biochemical characterization and preliminary X-ray crystallographic study of the domains of human ZBP1 bound to left-handed Z-DNA. Biochim. Biophys. Acta. 1764 (2), 320–323. https://doi.org/10.1016/j.bbapap.2005.12.012
- Ha S. C., Kim D., Hwang H.-Y., Rich A., Kim Y.-G., Kim K.K. 2008. The crystal structure of the second Z-DNA binding domain of human DAI (ZBP1) in complex with Z-DNA reveals an unusual binding mode to Z-DNA. Proc. Natl. Acad. Sci. USA. 105 (52), 20671–20676. https://doi.org/10.1073/pnas.0810463106
- Schwartz T., Behlke J., Lowenhaupt K., Heinemann U., Rich A. 2001. Structure of the DLM-1–Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat. Struct. Mol. Biol. 8, 761–765.
- Athanasiadis A, Placido D., Maas S., Brown 2nd B.A., Lowenhaupt K., Rich A. 2005. The crystal structure of the Z-domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains. J. Mol. Biol. 351, 496–507.
- Schwartz T., Rould M.A., Lowenhaupt K., Herbert A., Rich A. 1999. Crystal structure of the Z-domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science. 284, 1841–1845.
- Wang Z., Choi M.K., Ban T., Yanai H., Negishi H., Lu Y., Tamura T., Takaoka A., Nishikura K., Taniguchi T. 2008. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc. Natl. Acad. Sci. USA. 105 (14), 5477–5482. https://doi.org/10.1073/pnas.0801295105
- Ishii K. J., Kawagoe T., Koyama S., Matsui K., Kumar H., Kawai T., Uematsu S., Takeuchi O., Takeshita F., Coban C., Akira S. 2008. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature. 451 (7179), 725–729. https://doi.org/10.1038/nature06537
- Lippmann J., Rothenburg S., Deigendesch N., Eitel J., Meixenberger K., van Laak V., Slevogt H., Dje N’guessan P., Hippenstiel S., Chakraborty T., Flieger A., Suttorp N., Opitz B. 2008. IFNbeta responses induced by intracellular bacteria or cytosolic DNA in different human cells do not require ZBP1 (DLM-1/DAI). Cell Microbiol. 10 (12), 2579–2588. https://doi.org/10.1111/j.1462–5822.2008.01232.x
- Pham T. H., Kwon K.M., Kim Y.-E., Kim K.K., Jin-Hyun Ahn. 2013. DNA sensing-independent inhibition of herpes simplex virus 1 replication by DAI/ZBP1. J. Virol. 87 (6), 3076–3086. https://doi.org/10.1128/JVI.02860–12
- Rebsamen M., Heinz L.X., Meylan E., Michallet M.-C., Schroder K., Hofmann K., Vazquez J., Benedict C.A., Tschopp J. 2009. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep. 10 (8), 916–922. https://doi.org/10.1038/embor.2009.109
- Lei Y., VanPortfliet J.J., Chen Y.-F., Bryant J.D., Li Y., Fails D., Torres-Odio S., Ragan K.B., Deng J., Mohan A., Wang B., Brahms O.N., Yates S.D., Spencer M., Tong C.W., Bosenberg M.W., West L.C., Shadel G.S., Shutt T.E., Upton J.W., Li P., West A.P. 2023. Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS promotes cardiotoxicity. Cell. 186 (14), 3013–3032, e22. https://doi.org/10.1016/j.cell.2023.05.039
- Omura H., Oikawa D., Nakane T., Kato M., Ishii R., Ishitani R., Tokunaga F., Nureki O. 2016. Structural and Functional Analysis of DDX41: A bispecific immune receptor for DNA and cyclic dinucleotide. Sci. Rep. 6 (1), 1–11. https://doi.org/10.1038/srep34756
- Jiang Y., Zhu Y., Qiu W., Liu Y.-J., Cheng G., Liu Z.-J., Ouyang S. 2017. Structural and functional analyses of human DDX41 DEAD domain. Protein Cell. 8 (1), 72–76. https://doi.org/10.1007/s13238–016–0351–9
- Jiang Y., Zhu Y., Liu Z.-J., Ouyang S. 2017. The emerging roles of the DDX41 protein in immunity and diseases. Protein Cell. 8(2), 83–89. https://doi.org/10.1007/s13238–016–0303–4
- Zhang Z., Yuan B., Bao M., Lu N., Kim T., Liu Y.-J. 2011. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12(10), 959–965. https://doi.org/10.1038/ni.2091
- Parvatiyar K., Zhang Z., Teles R.M., Ouyang S., Jiang Y., Iyer S.S., Zaver S.A., Schenk M., Zeng S., Zhong W., Liu Z.-J., Modlin R.L., Liu Y.-J., Cheng G. 2012. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat. Immunol. 13, 1155–1161.
- Singh R. S., Vidhyasagar V., Yang S., Arna A.B., Yadav M., Aggarwal A., Aguilera A.N., Shinriki S., Bhanumathy K.K., Pandey K., Xu A., Rapin N., Bosch M., DeCoteau J., Xiang J., Vizeacoumar F.J., Zhou Y., Misra V., Matsui H., Ross S.R., Wu Y. 2022. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep. 39 (8), 110856. https://doi.org/10.1016/j.celrep.2022.110856
- Abe T., Harashima A., Xia T., Konno H., Konno K., Morales A., Ahn J., Gutman D., Barber G.N. 2013. STING recognition of cytoplasmic DNA instigates cellular defense. Mol. Cell. 50 (1), 5–15. https://doi.org/10.1016/j.molcel.2013.01.039
- Lieber M. R., Ma Y., Pannicke U., Schwarz K. 2003. Mechanism and regulation of human non-homologous DNA end-joining. Nat. Rev. Mol. Cell Biol. 4, 712–720.
- Ferguson B. J., Mansur D.S., Peters N.E., Ren H., Smith G.L. 2012. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife, 1, e00047. https://doi.org/10.7554/eLife.00047
- Hartley K. O., Gell D., Smith G.C., Zhang H., Divecha N., Connelly M.A., Admon A., Lees-Miller S P., Anderson C.W., Jackson S.P. 1995. DNA-dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell. 82, 849–856. https://doi.org/10.1016/0092–8674(95)90482–4
- Sharif H., Li Y., Dong Y., Dong L., Wang W.L., Mao Y., Wu H. 2017. Cryo-EM structure of the DNA-PK holoenzyme. Proc. Natl. Acad. Sci. USA. 114 (28), 7367–7372. https://doi.org/10.1073/pnas.1707386114
- Abbasi S., Parmar G., Kelly R.D., Balasuriya N., Schild-Poulter C. 2021. The Ku complex: Recent advances and emerging roles outside of non-homologous end-joining. Cell Mol. Life Sci. 78 (10), 4589–4613. https://doi.org/10.1007/s00018–021–03801–1
- Rivera-Calzada A., Spagnolo L., Pearl L.H., Llorca O. 2007. Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep. 8(1), 56–62. https://doi.org/10.1038/sj.embor.7400847
- Lees-Miller J.P., Cobban A., Katsonis P., Bacolla A., Tsutakawa S.E., Hammel Mi., Meek K., Anderson D.W., Lichtarge O., Tainer J.A., Lees-Miller S.P. 2021. Uncovering DNA-PKcs ancient phylogeny, unique sequence motifs and insights for human disease. Prog. Biophys. Mol. Biol. 163, 87–108. https://doi.org/10.1016/j.pbiomolbio.2020.09.010
- Yaneva M., Kowalewski T., Lieber M.R. 1997. Interaction of DNA-dependent protein kinase with DNA and with Ku: Biochemical and atomic-force microscopy studies. EMBO J. 16, 5098–5112
- Zhang X., Brann T.W., Zhou M., Yang J., Oguariri R.M., Lidie K.B., Imamichi H., Huang D.-W., Lempicki R.A., Baseler M.W., Veenstra T.D., Young H.A., Lane H.C., Imamichi T. 2011.Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J. Immunol. 186 (8), 4541–4545
- Burleigh K., Maltbaek J.H., Cambier S., Green R., Gale M., James R.C., Stetson D.B. 2020. Human DNA-PK activates a STING-independent DNA sensing pathway. Sci. Immunol. 5 (43), eaba4219. https://doi.org/10.1126/sciimmunol.aba4219
- Yuan S.-S.F., Hou M.-F., Hsieh Y.-C., Huang C.-Y., Lee Y.-C., Chen Y.-J., Lo S. 2012. Role of MRE11 in cell proliferation, tumor invasion, and DNA repair in breast cancer. J. Natl. Cancer Institute. 104 (19), 1485–1502. https://doi.org/10.1093/jnci/djs355
- Williams B., Bhattacharyya M.K., Lustig A.J. 2005. Mre 11 p nuclease activity is dispensable for telomeric rapid deletion. DNA Repair (Amst). 4 (9), 994–1005. https://doi.org/10.1016/j.dnarep.2005.04.016
- Käshammer L., Saathoff J.-H., Lammens K., Gut F., Bartho J., Alt A., Kessler B., Hopfner K.-P. 2019. Mechanism of DNA end sensing and processing by the Mre11-Rad50 complex. Mol. Cell. 76 (3), 382–394, e6. https://doi.org/10.1016/j.molcel.2019.07.035
- Kondo T., Kobayashi J., Saitoh T., Maruyama K., Ishii K.J., Barber G.N., Komatsu K., Akira S., Kawai T. 2013. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl. Acad. Sci. USA. 110 (8), 2969–2974. https://doi.org/10.1073/pnas.1222694110
- Roth S., Rottach A., Lotz-Havla A.S., Laux V., Muschaweckh A., Gersting S.W., Gersting S.W., Muntau A.C., Hopfner K.-P., Jin L., Vanness K., Petrini J.H.J., Drexler I., Leonhardt H., Ruland J. 2014. Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1b production. Nat. Immunol. 15, 538–545. https://doi.org/ 10.1038/ni.2888
- Macaron G., Khoury J., Hajj-Ali R.A., Prayson R.A., Srivastava S., Ehlers J.P., Mamsa H., Liszewski M.K., Jen J.C., Bermel R.A., Ontaneda D. 2021. Novel de novo TREX1 mutation in a patient with retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations mimicking demyelinating disease. Mult. Scler. Relat. Disord. 52, 103015. https://doi.org/10.1016/j.msard.2021.103015
- Brucet M., Querol-Audí J., Serra M., Ramirez-Espain X., Bertlik K., Ruiz L., Lloberas J., Macias M.J., Fita I., Celada A. 2007. Structure of the dimeric exonuclease TREX1 in complex with DNA displays a proline-rich binding site for WW Domains. J. Biol. Chem. 282 (19), 14547–14557. https://doi.org/10.1074/jbc.M700236200
- Hemphill W. O., Simpson S.R., Liu M., Salsbury Jr F.R., Hollis T., Grayson J.M., Perrino F.W. 2021. TREX1 as a novel immunotherapeutic target. Front. Immunol. 12, 660184. https://doi.org/10.3389/fimmu.2021.660184
- Yan N., Regalado-Magdos A.D., Stiggelbout B., Lee-Kirsch M.A., Lieberman J. 2010. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013.
- Stetson D. B., Ko J.S., Heidmann T., Medzhitov R. 2008. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. 134, 587–598.
- Yang Y. G., Lindahl T., Barnes D.E. 2007. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell. 131, 873–886.
- Lehtinen D. A., Harvey S., Mulcahy M.J., Hollis T., Perrino F.W. 2008. The TREX1 double-stranded DNA degradation activity is defective in dominant mutations associated with autoimmune disease. J. Biol. Chem. 283, 31649–31656.
- O’Driscoll M. 2008. TREX1 DNA exonuclease deficiency, accumulation of single stranded DNA and complex human genetic disorders. DNA Repair. 7, 997–1003.
- Salojin C., Gardberg A., Vivat V., Cui L., Lauer J., Cantone N., Stuckey J., Poy F., Almeciga I., Cummings R., Wilson J., Levell J., Rocnik J., Trojer P. 2021. The first-in-class small molecule TREX1 inhibitor CPI-381 demonstrates type I IFN induction and sensitization of tumors to immune checkpoint blockade. J. Immunother. Cancer. 9 (Suppl 2), A1–A1054. https://doi.org/10.1136/jitc-2021-SITC2021.76
- KonnoH., Yamauchi S., Berglund A., Putney R.M., Mulé J.J., Barber G.N. 2018. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene. 37 (15), 2037–2051. https://doi.org/10.1038/s41388–017–0120–0
补充文件
