Sensors of Intracellular Nucleic Acids Activating STING-Dependent Production of Interferons in Immunocompetent Cells

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Currently, foreign DNA or RNA sensor proteins, which play an important role in innate immunity, are of great interest as a new avenue for cancer immunotherapy. Agonists of these proteins can activate signaling cascades in immune cells that cause the production of cytokines, in particular type I interferons, which have a powerful cytotoxic effect. This review examines the functioning of cytoplasmic nucleic acid sensors such as cGAS, STING, IFI16, AIM2, DAI, DDX41, DNA-PK, MRE-11, and TREX1 involved in activating the production of various cytokines.

全文:

受限制的访问

作者简介

L. Smolyaninova

Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology

Email: smolyaninovalarisa1@gmail.com
俄罗斯联邦, Moscow, 115478

O. Solopova

Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology

编辑信件的主要联系方式.
Email: smolyaninovalarisa1@gmail.com
俄罗斯联邦, Moscow, 115478

参考

  1. Zahid A., Ismail H., Li B., Jin T. 2020. Molecular and structural basis of DNA sensors in antiviral innate immunity. Front Immunol. 11, 613039. https://doi.org/10.3389/fimmu.2020.613039
  2. Bartok E., Hartmann G. 2020. Immune sensing mechanisms that discriminate self from altered self and foreign nucleic acids. Immunity. 53 (1), 54–77. https://doi.org/0.1016/j.immuni.2020.06.014
  3. Ablasser A., Hur S. 2020. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat. Immunol. 21, 17–29. doi: 10.1038/s41590–019–0556–1
  4. Jiang M., Chen P., Wang L., Li W., Chen B., Liu Y., Wang H., Zhao S., Ye L., He Y., Zhou C. 2020. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol. 13, 81. https://doi.org/10.1186/s13045–020–00916-z
  5. Zhou J., Zhuang Z., Li J., Feng Z. 2023. Significance of the cGAS-STING pathway in health and disease. Int. J. Mol. Sci. 24 (17), 13316. https://doi.org/10.3390/ijms241713316
  6. Chen Q., Sun L., Chen Z.J. 2016. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat. Immunol., 17, 1142–1149. https://doi.org/10.1038/ni.3558
  7. Li Q., Tian S., Liang J., Fan J., Lai J., Chen Q. 2021. Therapeutic development by targeting the cGAS-STING Pathway in autoimmune disease and cancer. Front. Pharmacol. 12, 779425. https://doi.org/10.3389/fphar.2021.779425
  8. Zhang D., Liu Y., Zhu Y., Zhang Q., Guan H., Liu S., Chen S., Mei C., Chen C., Liao Z., Xi Y., Ouyang S., Feng X.-H., Liang T., Shen L., Xu P. 2022. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat. Cell Biol. 24 (5), 766–782. https://doi.org/ 10.1038/s41556–022–00894-z
  9. Sun L., Wu J., Du F., Chen X., Chen Z.J. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 339, 786–791. https://doi.org/10.1126/science.1232458
  10. Wu X., Wu F.-H., Wang X., Wang L., Siedow J.N., Zhang W., Pei Z.-M. 2014. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. 42 (13), 8243–8257. https://doi.org/10.1093/nar/gku569
  11. Zhou W., Whiteley A.T., de Oliveira Mann C.C., Morehouse B.R., Nowak R.P., Fischer E.S., Gray N.S., Mekalanos J.J., Kranzusch P.J. 2018. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell. 174 (2), 300–311, e11. https://doi.org/10.1016/j.cell.2018.06.026
  12. Wang D., Zhao H., Shen Y., Chen Q. 2022. A variety of nucleic acid species are sensed by cGAS, implications for its diverse functions. Front. Immunol. 13, 826880. https://doi.org/ 10.3389/fimmu.2022.826880
  13. Wu J., Sun L., Chen X., Du F., Shi H., Chen C., Chen Z.J. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 339 (6121), 826–830. https://doi.org/ 10.1126/science.1229963
  14. HerznerA.-M., Hagmann C.A., Goldeck M., Wolter S., Kübler K., Wittmann S., Gramberg T., Andreeva L., Hopfner K.-P. Mertens C., Zillinger T., Jin T., Xiao T.S., Bartok E., Coch C., Ackermann D., Hornung V., Ludwig J., Barchet W., Hartmann G., Schlee M. 2015. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat. Immunol. 16 (10), 1025–1033. https://doi.org/10.1038/ni.3267
  15. Gentili M., Kowal J., Tkach M., Satoh T., Lahaye X., Conrad C., Boyron M., Lombard B., Durand S., Kroemer G., Loew D., Dalod M., Théry C., Manel N. 2015. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science. 349 (6253),1232–1236. https://doi.org/10.1126/science.aab3628
  16. Zhang X., Wu J., Du F., Xu H., Sun L., Chen Z., Brautigam C.A, Zhang X., Chen Z.J. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 6 (3), 421–430. https://doi.org/10.1016/j.celrep.2014.01.003
  17. Li X., Shu C., Yi G., Chaton C.T., Shelton C.L., Diao J., Zuo X., Kao C.C., Herr A.B., Li P. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 39(6), 1019–1031. https://doi.org/10.1016/j.immuni.2013.10.019
  18. Kranzusch P. J., Lee A.S.-Y., Berger J.M., Doudna J.A. 2013. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3 (5), 1362–1368. https://doi.org/10.1016/j.celrep.2013.05.008
  19. HuérfanoS., Šroller V., Bruštíková K, Horníková L, Forstová J. 2022. The interplay between viruses and host DNA sensors. Viruses. 14 (4), 666. https://doi.org/10.3390/v14040666
  20. Yoh S. M., Schneider M., Seifried J., Soonthornvacharin S., Akleh R.E., Olivieri K.C., De Jesus P.D., Ruan C., de Castro E., Ruiz P.A., Germanaud D., des Portes V., García-Sastre A., König R., Chanda S.K. 2015. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell. 161 (6),1293–1305. https://doi.org/10.1016/j.cell.2015.04.050
  21. Seo G. J., Yang A., Tan B., Kim S., Liang Q., Choi Y., Yuan W., Feng P., Park H.-S., Jung J.U. 2015. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep. 13 (2), 440–449. https://doi.org/10.1016/j.celrep.2015.09.007
  22. Xia P., Ye B., Wang S., Zhu X., Du Y., Xiong Z., Tian Y., Fan Z. 2016. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol. 17 (4), 369–378. https://doi.org/10.1038/ni.3356
  23. Jiang H., Xue X., Panda S., Kawale A., Hooy R.M., Liang F., Sohn J., Sung P., Gekara N.O. 2019. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 38 (21), e102718. https://doi.org/10.15252/embj.2019102718
  24. Michalski S., Mann C.C. de O., Stafford C.A., Witte G., Bartho J., Lammens K., Hornung V., Hopfner K.-P. Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature. 587 (7835), 678–682. https://doi.org/ 10.1038/s41586–020–2748–0
  25. Zhou S., Su T., Cheng F., Cole J., Liu X., Zhang B., Alam S., Liu J., Zhu G. 2023. Engineering cGAS-agonistic oligonucleotides as therapeutics and vaccine adjuvants for cancer immunotherapy. bioRxiv, 2023.07.13.548237. https://doi.org/10.1101/2023.07.13.548237. Preprint
  26. Ishikawa H., Barber G.N. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signaling. Nature. 455, 674–678. https://doi.org/10.1038/nature07317
  27. Hussain B., Xie Y., Jabeen U., Lu D., Yang B., Wu C., Shang G. 2022.Activation of STING based on its structural features. Front. Immunol. 13, 808607. https://doi.org/10.3389/fimmu.2022.808607
  28. Zhang X., Shi H., Wu J., Zhang X., Sun L., Chen C., Chen Z.J. 2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell. 51, 226–235. https://doi.org/10.1016/j.molcel.2013.05.022
  29. Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., Matsushita K., Hiiragi A., Dermody T.S., Fujita T., Akira S. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5. J. Exp. Med. 205 (7), 1601–1610. https://doi.org/10.1084/jem.20080091
  30. Shang G., Zhang C., Chen Z.J., Bai X.-C., Zhang X. 2019. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature. 567, 389–393. https://doi.org/10.1038/s41586–019–0998–5
  31. Mukai K., Konno H., Akiba T., Uemura T., Waguri S., Kobayashi T., Barber G.N., Arai H., Taguchi T. 2016. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932. https://doi.org/10.1038/ncomms11932
  32. Liu S., Cai X., Wu J., Cong Q., Chen X., Li T., Du F., Ren J., Wu Y.-T., Grishin N.V., Chen Z.J. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 347 (6227), eaat8657. https://doi.org/10.1126/science.aaa2630
  33. Agalioti T., Lomvardas S., Parekh B., Yie J., Maniatis T., Thanos D. 2000. Ordered recruitment of chromatin modifying and general transcription factors to the IFNb promoter. Cell. 103 (4), 667–678. https://doi.org/10.1016/S0092–8674(00)00169–0
  34. Zhang J., Hu M.M., Wang Y.Y., Shu H.B. 2012. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J. Biol. Chem. 287, 28646–28655
  35. Tsuchida T., Zou J., Saitoh T., Kumar H., Abe T., Matsuura Y., Kawai T., Akira S. 2010. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776. https://doi.org/10.1016/j.immuni.2010.10.013
  36. Zhong B., Zhang L., Lei C., Li Y., Mao A.-P., Yang Y., Wang Y.-Y., Zhang X.-L., Shu H.-B. 2009. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity. 30, 397–407. https://doi.org/10.1016/j.immuni.2009.01.008
  37. Wang Y., Lian Q., Yang B., Yan S., Zhou H., He L., Lin G., Lian Z., Jiang Z., Sun B. 2015. TRIM30a is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathog. 11, e1005012. https://doi.org/10.1371/journal.ppat.1005012
  38. Ishikawa H., Barber G.N. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signaling. Nature. 455 (7213), 674–678. https://doi.org/10.1038/nature07317
  39. Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., Matsumoto M., Hoshino K., Wagner H., Takeda K., Akira S. 2000. A Toll-like receptor recognizes bacterial DNA. Nature. 408, 740–745
  40. Abe T., Harashima A., Xia T., Konno H., Konno K., Morales A., Ahn J., Gutman D., Barber G.N. 2013. STING recognition of cytoplasmic DNA instigates cellular defense. Mol. Cell. 50 (1), 5–15. https://doi.org/10.1016/j.molcel.2013.01.039
  41. Demaria O., Gassart A.D., Coso S., Gestermann N., Di Domizio J., Flatz L., Gaide O., Michielin O., Hwu P., Petrova T.V., Martinon F., Modlin R.L., Speiser D.E., Gilliet M. 2015. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl. Acad. Sci. USA. 112 (50), 15408–15413. https://doi.org/10.1073/pnas.1512832112
  42. Padovan E., Spagnoli G.C., Ferrantini M., Heberer M. 2002. IFN-α2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells. J. Leukoc. Biol. 71 (4), 669–676. https://doi.org/10.1189/jlb.71.4.669
  43. Glickman L. H., Kanne D.B., Kasibhatla S., Li J., Pferdekamper A.M.C., Gauthier K.S., Deng W., Desbien A.L., Katibah G.E., Leong J.J., Sung L., Metchette K., Ndubaku C., Zheng L., Cho C., Feng Y., McKenna J.M., Tallarico J.A., Bender S.L., Dubensky T.W., McWhirter S.M. 2016. STING activation in the tumor microenvironment with a synthetic human STING-activating cyclic dinucleotide leads to potent anti-tumor immunity. Cancer Res. 76 (14_Supplement), 1445. https://doi.org/10.1158/1538–7445.AM2016–1445
  44. Sivick K. E., Desbien A.L., Glickman L.H., Reiner G.L., Corrales L., Surh N.H., Hudson T.E., Vu U.T., Francica B.J., Banda T., Katibah G.E., Kanne D.B., Leong J.J., Metchette K., Bruml J.R., Ndubaku C.O., McKenna J.M., Feng Y., Zheng L., Bender S.L., Cho C.Y., Leong M.L., van Elsas A., Dubensky Jr.T.W., McWhirter S.M. 2018. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep. 25, 3074–3085. https://doi.org/10.1016/j.celrep.2018.11.047
  45. Meric-Bernstam F., Sweis R.F., Hodi F.S., Messersmith W.A., Andtbacka R.H.I., Ingham M., Lewis N., Chen X., Pelletier M., Chen X., Wu J., Dubensky T.W., McWhirter S.M., Muller T., Nitya N., Jason J.L. 2022. Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/ metastatic solid tumors or lymphomas. Clin. Cancer Res. 28, 677–688. https://doi.org/10.1158/1078–0432.CCR-21–1963
  46. Adli A. D.F., Jahanban-Esfahlan R., Seidi K., Samandari-Rad S., Zarghami N. 2018. An overview on Vadimezan (DMXAA), the vascular disrupting agent. Chem. Biol. Drug Des. 91 (5), 996–1006. https://doi.org/10.1111/cbdd.13166
  47. Ramanjulu J. M., Pesiridis G.S., Yang J., Concha N., Singhaus R., Zhang S.-Y., et al. 2018. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature. 564 (7736), 439–443. https://doi.org/10.1038/s41586–018–0705-y
  48. Liu J., Huang X., Ding J. 2021. Identification of MSA-2: An oral antitumor non-nucleotide STING agonist. Signal Transduct. Target. Ther. 6, 18. https://doi.org/10.1038/s41392–020–00459–2
  49. Jakobsen M. R., Bak R.O., Andersen A., Berg R.K., Jensen S.B., Jin T., Laustsen A., Hansen K., Ostergaard L., Fitzgerald K.A., Xiao T.S., Mikkelsen J.G., Mogensen T.H., Paludan S.R. 2013. IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc. Natl. Acad. Sci. USA. 110 (48), E4571–E4580. https://doi.org/10.1073/pnas.1311669110
  50. Kerur N., Veettil M.V., Sharma-Walia N., Bottero V., Sadagopan S., Otageri P., Chandran B. 2011. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host Microbe. 9 (5), 363–375. https://doi.org/10.1016/j.chom.2011.04.008
  51. Fan X., Jiang J., Zhao D., Chen F., Ma H., Smith P., Unterholzner L., Xiao T.S., Jin T. 2021. Structural mechanism of DNA recognition by the p204 HIN domain. Nucleic Acids Research, 49 (5), 2959–2972. https://doi.org/10.1093/nar/gkab076
  52. Morrone S. R., Wang T., Constantoulakis L.M., Hooy R.M., Delannoy M.J., Sohn J. 2014. Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Proc. Natl. Acad. Sci. USA. 111 (1), E62–E71. https://doi.org/10.1073/pnas.1313577111
  53. Stratmann S. A., Morrone S.R., van Oijen A.M., Sohn J. 2015. The innate immune sensor IFI16 recognizes foreign DNA in the nucleus by scanning along the duplex. Elife. 4, e11721. https://doi.org/10.7554/eLife.1172
  54. Ni X., Ru H., Ma F., Zhao L., Shaw N., Feng Y., Ding W., Gong W., Wang Q., Ouyang S., Cheng G., Liu Z.-J. 2016. New insights into the structural basis of DNA recognition by HINa and HINb domains of IFI16. J. Mol. Cell Biol. 8 (1), 51–61. https://doi.org/10.1093/jmcb/mjv053
  55. Unterholzner L., Keating S.E., Baran M., Horan K.A., Jensen S.B., Sharma S., Sirois C.M., Jin T., Latz E., Xiao T.S., Fitzgerald K.A., Paludan S.R., Bowie A.G. 2010. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004. https://doi.org/10.1038/ni.1932
  56. Jin T., Perry A., Jiang J., Smith P., Curry J.A., Unterholzner L., Jiang Z., Horvath G., Rathinam V.A., Johnstone R.W., Hornung V., Latz E., Bowie A.G., Fitzgerald K.A., Xiao T.S. 2012. Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity. 36 (4), 561–571. https://doi.org/10.1016/j.immuni.2012.02.014
  57. Ru H., Ni X., Zhao L., Crowley C., Ding W., Hung L.-W., Shaw N., Cheng G., Liu Z.-J. 2013. Structural basis for termination of AIM2-mediated signaling by p202. Cell Res. 23 (6), 855–858. https://doi.org/10.1038/cr.2013.52
  58. Buenrostro J. D., Giresi P.G., Zaba L.C., Chang H.Y., Greenleaf W.J. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods. 10 (12), 1213–1218. https://doi.org/10.1038/nmeth.2688
  59. Lum K. K., Howard T.R., Pan C., Cristea I.M. 2019. Charge-mediated pyrin oligomerization nucleates antiviral IFI16 sensing of herpesvirus DNA. mBio. 10 (4), e01428–19. https://doi.org/10.1128/mBio.01428–19
  60. Doitsh G., Galloway N.L.K., Geng X., Yang Z., Monroe K.M., Zepeda O., Hunt P.W., Hatano H., Sowinski S., Muñoz-Arias I., Greene W.C. 2014. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 505 (7484), 509–514. https://doi.org/10.1038/nature12940
  61. Jønsson K., Laustsen A., Krapp C., Skipper K., Thavachelvam K., Hotter D., Egedal J.H., Kjolby M., Mohammadi P., Prabakaran T., Sørensen L.K., Sun C., Jensen S.B., Holm C.K., Lebbink R.J., Johannsen M., Nyegaard M., Mikkelsen J.G., Kirchhoff F., Paludan S.R., Jakobsen M.R. 2017. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat. Commun. 8, 14391. https://doi.org/10.1038/ncomms14391
  62. Rathinam V. A., Jiang Z., Waggoner S.N., Sharma S., Cole L.E., Waggoner L., Vanaja S.K., Monks B.G., Ganesan S., Latz E., Hornung V., Vogel S.N., Szomolanyi-Tsuda E., Fitzgerald K.A. 2010. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11 (5), 395. https://doi.org/10.1038/ni.1864
  63. Hauenstein A. V., Zhang L., Wu H. 2015. The hierarchical structural architecture of inflammasomes, supramolecular inflammatory machines. Curr. Opin. Struct. Biol. 31, 75–83. https://doi.org/10.1016/j.sbi.2015.03.014
  64. Sharma M., de Alba E. 2021. Structure, activation and regulation of NLRP3 and AIM2 inflammasomes. Int. J. Mol. Sci. 22 (2), 872. https://doi.org/10.3390/ijms22020872
  65. Morrone S. R., Matyszewski M., Yu X., Delannoy M., Egelman E.H., Sohn J. 2015. Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a polymerization template for downstream ASC. Nat. Commun. 6, 7827. https://doi.org/10.1038/ncomms8827
  66. Lu A., Li Y., Yin Q., Ruan J., Yu X., Egelman E., Wu H. 2015. Plasticity in PYD assembly revealed by cryo-EM structure of the PYD filament of AIM2. Cell Discovery. 1, 15013. https://doi.org/10.1038/celldisc.2015.13
  67. Hornung V., Ablasser A., Charrel-Dennis M., Bauernfeind F., Horvath G., Caffrey D.R., Latz E., Fitzgerald K.A. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 458, 514–518.
  68. Panchanathan R., Duan X., Shen H., Rathinam V.A.K., Erickson L.D., Fitzgerald K.A., Choubey D. 2010. Aim2 deficiency stimulates the expression of IFN-inducible Ifi202, a lupus susceptibility murine gene within the Nba2 autoimmune susceptibility locus. J. Immunol.185 (12), 7385–7393. https://doi.org/10.4049/jimmunol.1002468
  69. Corrales L., Woo S.-R., Williams J.B., McWhirter S.M., Dubensky Jr T.W., Gajewski T.F. 2016. Antagonism of the STING pathway via activation of the AIM2 inflammasome by intracellular DNA. J. Immunol. 196 (7), 3191–3198. https://doi.org/10.4049/jimmunol.1502538
  70. Mayer-Barber K.D., Andrade B.B., Oland S.D., Amaral E.P., Barber D.L., Gonzales J., Derrick S.C., Shi R., Kumar N.P., Wei W., Yuan X., Zhang G., Cai Y., Babu S., Catalfamo M., Salazar A.M., Via L.E., Barry 3rd C.E., Sher A. 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 511 (7507), 99–103. https://doi.org/10.1038/nature13489
  71. Takaoka A., Wang Z., Choi M.K., Yanai H., Negishi H., Ban T., Lu Y., Miyagishi M., Kodama T., Honda K., Ohba Y., Taniguchi T. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 448, 501–505. https://doi.org/10.1038/nature06013
  72. Deigendesch N., Koch-Nolte F., Rothenburg S. 2006. ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains. Nucleic Acids Res. 34 (18), 5007–5020. https://doi.org/10.1093/nar/gkl575
  73. Ha S. C., Quyen D.V., Hwang H.-Y., Oh D.-B., Brown 2nd B.A., Lee S.M., Park H.-J., Ahn J.-H., Kim K.K., Kim Y.-G. 2006. Biochemical characterization and preliminary X-ray crystallographic study of the domains of human ZBP1 bound to left-handed Z-DNA. Biochim. Biophys. Acta. 1764 (2), 320–323. https://doi.org/10.1016/j.bbapap.2005.12.012
  74. Ha S. C., Kim D., Hwang H.-Y., Rich A., Kim Y.-G., Kim K.K. 2008. The crystal structure of the second Z-DNA binding domain of human DAI (ZBP1) in complex with Z-DNA reveals an unusual binding mode to Z-DNA. Proc. Natl. Acad. Sci. USA. 105 (52), 20671–20676. https://doi.org/10.1073/pnas.0810463106
  75. Schwartz T., Behlke J., Lowenhaupt K., Heinemann U., Rich A. 2001. Structure of the DLM-1–Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat. Struct. Mol. Biol. 8, 761–765.
  76. Athanasiadis A, Placido D., Maas S., Brown 2nd B.A., Lowenhaupt K., Rich A. 2005. The crystal structure of the Z-domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains. J. Mol. Biol. 351, 496–507.
  77. Schwartz T., Rould M.A., Lowenhaupt K., Herbert A., Rich A. 1999. Crystal structure of the Z-domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science. 284, 1841–1845.
  78. Wang Z., Choi M.K., Ban T., Yanai H., Negishi H., Lu Y., Tamura T., Takaoka A., Nishikura K., Taniguchi T. 2008. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc. Natl. Acad. Sci. USA. 105 (14), 5477–5482. https://doi.org/10.1073/pnas.0801295105
  79. Ishii K. J., Kawagoe T., Koyama S., Matsui K., Kumar H., Kawai T., Uematsu S., Takeuchi O., Takeshita F., Coban C., Akira S. 2008. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature. 451 (7179), 725–729. https://doi.org/10.1038/nature06537
  80. Lippmann J., Rothenburg S., Deigendesch N., Eitel J., Meixenberger K., van Laak V., Slevogt H., Dje N’guessan P., Hippenstiel S., Chakraborty T., Flieger A., Suttorp N., Opitz B. 2008. IFNbeta responses induced by intracellular bacteria or cytosolic DNA in different human cells do not require ZBP1 (DLM-1/DAI). Cell Microbiol. 10 (12), 2579–2588. https://doi.org/10.1111/j.1462–5822.2008.01232.x
  81. Pham T. H., Kwon K.M., Kim Y.-E., Kim K.K., Jin-Hyun Ahn. 2013. DNA sensing-independent inhibition of herpes simplex virus 1 replication by DAI/ZBP1. J. Virol. 87 (6), 3076–3086. https://doi.org/10.1128/JVI.02860–12
  82. Rebsamen M., Heinz L.X., Meylan E., Michallet M.-C., Schroder K., Hofmann K., Vazquez J., Benedict C.A., Tschopp J. 2009. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep. 10 (8), 916–922. https://doi.org/10.1038/embor.2009.109
  83. Lei Y., VanPortfliet J.J., Chen Y.-F., Bryant J.D., Li Y., Fails D., Torres-Odio S., Ragan K.B., Deng J., Mohan A., Wang B., Brahms O.N., Yates S.D., Spencer M., Tong C.W., Bosenberg M.W., West L.C., Shadel G.S., Shutt T.E., Upton J.W., Li P., West A.P. 2023. Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS promotes cardiotoxicity. Cell. 186 (14), 3013–3032, e22. https://doi.org/10.1016/j.cell.2023.05.039
  84. Omura H., Oikawa D., Nakane T., Kato M., Ishii R., Ishitani R., Tokunaga F., Nureki O. 2016. Structural and Functional Analysis of DDX41: A bispecific immune receptor for DNA and cyclic dinucleotide. Sci. Rep. 6 (1), 1–11. https://doi.org/10.1038/srep34756
  85. Jiang Y., Zhu Y., Qiu W., Liu Y.-J., Cheng G., Liu Z.-J., Ouyang S. 2017. Structural and functional analyses of human DDX41 DEAD domain. Protein Cell. 8 (1), 72–76. https://doi.org/10.1007/s13238–016–0351–9
  86. Jiang Y., Zhu Y., Liu Z.-J., Ouyang S. 2017. The emerging roles of the DDX41 protein in immunity and diseases. Protein Cell. 8(2), 83–89. https://doi.org/10.1007/s13238–016–0303–4
  87. Zhang Z., Yuan B., Bao M., Lu N., Kim T., Liu Y.-J. 2011. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12(10), 959–965. https://doi.org/10.1038/ni.2091
  88. Parvatiyar K., Zhang Z., Teles R.M., Ouyang S., Jiang Y., Iyer S.S., Zaver S.A., Schenk M., Zeng S., Zhong W., Liu Z.-J., Modlin R.L., Liu Y.-J., Cheng G. 2012. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat. Immunol. 13, 1155–1161.
  89. Singh R. S., Vidhyasagar V., Yang S., Arna A.B., Yadav M., Aggarwal A., Aguilera A.N., Shinriki S., Bhanumathy K.K., Pandey K., Xu A., Rapin N., Bosch M., DeCoteau J., Xiang J., Vizeacoumar F.J., Zhou Y., Misra V., Matsui H., Ross S.R., Wu Y. 2022. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep. 39 (8), 110856. https://doi.org/10.1016/j.celrep.2022.110856
  90. Abe T., Harashima A., Xia T., Konno H., Konno K., Morales A., Ahn J., Gutman D., Barber G.N. 2013. STING recognition of cytoplasmic DNA instigates cellular defense. Mol. Cell. 50 (1), 5–15. https://doi.org/10.1016/j.molcel.2013.01.039
  91. Lieber M. R., Ma Y., Pannicke U., Schwarz K. 2003. Mechanism and regulation of human non-homologous DNA end-joining. Nat. Rev. Mol. Cell Biol. 4, 712–720.
  92. Ferguson B. J., Mansur D.S., Peters N.E., Ren H., Smith G.L. 2012. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife, 1, e00047. https://doi.org/10.7554/eLife.00047
  93. Hartley K. O., Gell D., Smith G.C., Zhang H., Divecha N., Connelly M.A., Admon A., Lees-Miller S P., Anderson C.W., Jackson S.P. 1995. DNA-dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell. 82, 849–856. https://doi.org/10.1016/0092–8674(95)90482–4
  94. Sharif H., Li Y., Dong Y., Dong L., Wang W.L., Mao Y., Wu H. 2017. Cryo-EM structure of the DNA-PK holoenzyme. Proc. Natl. Acad. Sci. USA. 114 (28), 7367–7372. https://doi.org/10.1073/pnas.1707386114
  95. Abbasi S., Parmar G., Kelly R.D., Balasuriya N., Schild-Poulter C. 2021. The Ku complex: Recent advances and emerging roles outside of non-homologous end-joining. Cell Mol. Life Sci. 78 (10), 4589–4613. https://doi.org/10.1007/s00018–021–03801–1
  96. Rivera-Calzada A., Spagnolo L., Pearl L.H., Llorca O. 2007. Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep. 8(1), 56–62. https://doi.org/10.1038/sj.embor.7400847
  97. Lees-Miller J.P., Cobban A., Katsonis P., Bacolla A., Tsutakawa S.E., Hammel Mi., Meek K., Anderson D.W., Lichtarge O., Tainer J.A., Lees-Miller S.P. 2021. Uncovering DNA-PKcs ancient phylogeny, unique sequence motifs and insights for human disease. Prog. Biophys. Mol. Biol. 163, 87–108. https://doi.org/10.1016/j.pbiomolbio.2020.09.010
  98. Yaneva M., Kowalewski T., Lieber M.R. 1997. Interaction of DNA-dependent protein kinase with DNA and with Ku: Biochemical and atomic-force microscopy studies. EMBO J. 16, 5098–5112
  99. Zhang X., Brann T.W., Zhou M., Yang J., Oguariri R.M., Lidie K.B., Imamichi H., Huang D.-W., Lempicki R.A., Baseler M.W., Veenstra T.D., Young H.A., Lane H.C., Imamichi T. 2011.Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J. Immunol. 186 (8), 4541–4545
  100. Burleigh K., Maltbaek J.H., Cambier S., Green R., Gale M., James R.C., Stetson D.B. 2020. Human DNA-PK activates a STING-independent DNA sensing pathway. Sci. Immunol. 5 (43), eaba4219. https://doi.org/10.1126/sciimmunol.aba4219
  101. Yuan S.-S.F., Hou M.-F., Hsieh Y.-C., Huang C.-Y., Lee Y.-C., Chen Y.-J., Lo S. 2012. Role of MRE11 in cell proliferation, tumor invasion, and DNA repair in breast cancer. J. Natl. Cancer Institute. 104 (19), 1485–1502. https://doi.org/10.1093/jnci/djs355
  102. Williams B., Bhattacharyya M.K., Lustig A.J. 2005. Mre 11 p nuclease activity is dispensable for telomeric rapid deletion. DNA Repair (Amst). 4 (9), 994–1005. https://doi.org/10.1016/j.dnarep.2005.04.016
  103. Käshammer L., Saathoff J.-H., Lammens K., Gut F., Bartho J., Alt A., Kessler B., Hopfner K.-P. 2019. Mechanism of DNA end sensing and processing by the Mre11-Rad50 complex. Mol. Cell. 76 (3), 382–394, e6. https://doi.org/10.1016/j.molcel.2019.07.035
  104. Kondo T., Kobayashi J., Saitoh T., Maruyama K., Ishii K.J., Barber G.N., Komatsu K., Akira S., Kawai T. 2013. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl. Acad. Sci. USA. 110 (8), 2969–2974. https://doi.org/10.1073/pnas.1222694110
  105. Roth S., Rottach A., Lotz-Havla A.S., Laux V., Muschaweckh A., Gersting S.W., Gersting S.W., Muntau A.C., Hopfner K.-P., Jin L., Vanness K., Petrini J.H.J., Drexler I., Leonhardt H., Ruland J. 2014. Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1b production. Nat. Immunol. 15, 538–545. https://doi.org/ 10.1038/ni.2888
  106. Macaron G., Khoury J., Hajj-Ali R.A., Prayson R.A., Srivastava S., Ehlers J.P., Mamsa H., Liszewski M.K., Jen J.C., Bermel R.A., Ontaneda D. 2021. Novel de novo TREX1 mutation in a patient with retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations mimicking demyelinating disease. Mult. Scler. Relat. Disord. 52, 103015. https://doi.org/10.1016/j.msard.2021.103015
  107. Brucet M., Querol-Audí J., Serra M., Ramirez-Espain X., Bertlik K., Ruiz L., Lloberas J., Macias M.J., Fita I., Celada A. 2007. Structure of the dimeric exonuclease TREX1 in complex with DNA displays a proline-rich binding site for WW Domains. J. Biol. Chem. 282 (19), 14547–14557. https://doi.org/10.1074/jbc.M700236200
  108. Hemphill W. O., Simpson S.R., Liu M., Salsbury Jr F.R., Hollis T., Grayson J.M., Perrino F.W. 2021. TREX1 as a novel immunotherapeutic target. Front. Immunol. 12, 660184. https://doi.org/10.3389/fimmu.2021.660184
  109. Yan N., Regalado-Magdos A.D., Stiggelbout B., Lee-Kirsch M.A., Lieberman J. 2010. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013.
  110. Stetson D. B., Ko J.S., Heidmann T., Medzhitov R. 2008. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. 134, 587–598.
  111. Yang Y. G., Lindahl T., Barnes D.E. 2007. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell. 131, 873–886.
  112. Lehtinen D. A., Harvey S., Mulcahy M.J., Hollis T., Perrino F.W. 2008. The TREX1 double-stranded DNA degradation activity is defective in dominant mutations associated with autoimmune disease. J. Biol. Chem. 283, 31649–31656.
  113. O’Driscoll M. 2008. TREX1 DNA exonuclease deficiency, accumulation of single stranded DNA and complex human genetic disorders. DNA Repair. 7, 997–1003.
  114. Salojin C., Gardberg A., Vivat V., Cui L., Lauer J., Cantone N., Stuckey J., Poy F., Almeciga I., Cummings R., Wilson J., Levell J., Rocnik J., Trojer P. 2021. The first-in-class small molecule TREX1 inhibitor CPI-381 demonstrates type I IFN induction and sensitization of tumors to immune checkpoint blockade. J. Immunother. Cancer. 9 (Suppl 2), A1–A1054. https://doi.org/10.1136/jitc-2021-SITC2021.76
  115. KonnoH., Yamauchi S., Berglund A., Putney R.M., Mulé J.J., Barber G.N. 2018. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene. 37 (15), 2037–2051. https://doi.org/10.1038/s41388–017–0120–0

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Cytoplasmic nucleic acid sensors involved in activation of the STING signaling pathway and inducing type I interferon production.

下载 (145KB)
3. Fig. 2. Schematic of the domain organization of human cGAS (a) and a model of the cGAS-DNA (2:2) complex (b), in which each cGAS monomer interacts with DNA (adapted from [10, 11], used with permission of the publisher).

下载 (185KB)
4. Fig. 3. Schematic of the domain organization of the human STING protein (a) and the model of the ligand-STING complex (b) (adapted from [27], used with permission of the publisher).

下载 (109KB)
5. Fig. 4. Schematic of the domain organization of the mouse IFI16 protein (a) and a model of the dcDNA complex with HINa- and HINb-domains linked by a linker (red) (b) (adapted from [51], used with permission of the publisher).

下载 (66KB)
6. Fig. 5. Schematic of the domain organization of AIM2 (a) and model of the structure of the PYD domain (lemon color) and the dcDNA-AIM2 complex (b) (adapted from [63], used with permission of the publisher). OB1, OB2 - oligonucleotide/oligosaccharide binding folds within the HIN200 domain.

下载 (65KB)
7. Fig. 6. Schematic of the domain organization of ZBP1 (a) and model of the structure of the Z-DNA complex with two ZBP1 molecules (b) (adapted from [71, 74], used with permission of the publisher). a - Zα- and Zβ-domains binding the Z-form of DNA are shown in pink; the D3-region involved in the binding of the right-twisted B-form of DNA is shown in yellow. b - dcDNA (brown), ZBP1 molecules (purple).

下载 (81KB)
8. Fig. 7. Schematic of the domain organization of DDX41 (a), structure model of the closed conformation of the DEAD domain (b), and docking model of the DEAD domain complex bound to dcDNA (c) (adapted from [85, 86], used with permission of the publisher).

下载 (167KB)
9. Fig. 8. Schematic of the domain organization of DNA-PKcs (a) and human Ku70, Ku80 subunits (b), model of the secondary structure of the dimeric complex of Ku80 (purple) and Ku70 (red) subunits (c) and the DNA complex (yellow-orange) with the Ku70-Ku80 heterodimer (d) (adapted from [94-96], used with permission of the publisher). The amino acid after which the Ku70 subunit-specific amino acid sequence begins is marked with a blue filled dot.

下载 (199KB)
10. Fig. 9. Schematic of the domain organization of MRE-11 (a) and a model of the E. coli MRE11-RAD50 complex in the resting state (b) and in the DNA-bound state (c) (adapted from [102, 103], used with permission of the publisher). DNA binding causes a shift in nucleotide-binding domains (NBDs) and rearrangements in MRE-11, leading to channel formation in the active center region and clamping of DNA ends. HLH - helix-loop-helix, CC - double helix.

下载 (199KB)
11. Fig. 10. Schematic of TREX1 domain organization (a) and model of the TREX1 homodimer structure (b) (adapted from [106, 107], used with permission of the publisher). b - TREX1 monomers are indicated in blue and purple. The black square indicates the active center region where magnesium ions (green spheres) and dTMP nucleotide (yellow-orange structure) bind and ocDNA binding occurs. A disordered loop (166-174 a. o.) is present within the monomer and is involved in binding to dcDNA. The position of the loop is labeled Ala165 and Lys175.

下载 (95KB)

版权所有 © The Russian Academy of Sciences, 2024