Force Characteristics of Yersinia pestis Lipopolysaccharide Interaction with TLR4 and CD14 Receptors on J774 Macrophages. Atomic Force Microscopy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

One of the main stages of infectious process, which mostly determines the course and outcome of the disease, is the initial contact of the pathogen with the host cells. The lipopolysaccharide as a component of the outer membrane is crucially involved in the interaction between Gram-negative bacteria and immunocompetent host cells. It triggers immune reactions by interaction with specific receptors, mainly CD14 and TLR4. The aim of this work was to quantify the force characteristics of the interaction of Yersinia pestis EV lipopolysaccharide with CD14 and TLR4 receptors on the surface of mouse macrophages J774 by atomic force microscopy. Lipopolysaccharide was extracted from Y. pestis cells (vaccine strain EV) grown at 27°С. The expression of receptors on the cell surface was evaluated by fluorescent and confocal microscopy. Using monoclonal antibodies against CD14 and TLR4 receptors, force spectroscopy was used to estimate the force characteristics of the interaction between lipopolysaccharide on the cantilever surface and J774 macrophages immobilized on a glass substrate. The conditions for immobilization of J774 macrophages on glass were developed that allowed scanning the cell surface and estimating the adhesion force of target antigens to the cells. Incubation of macrophages in solutions with monoclonal antibodies against CD14 and TLR4 receptors caused a decrease in the major force characteristics of the interaction in the J774 macrophage – Y. pestis lipopolysaccharide system compared to the system containing untreated macrophages. A similar effect was observed after pretreatment of the cells with a solution containing the same lipopolysaccharide without monoclonal antibodies. The results show the ability of the Y. pestis lipopolysaccharide chemically bound to the cantilever to interact with CD14 and TLR4 receptors on the macrophage surface.

Sobre autores

V. Belozerov

Vyatka State University; Institute of Physiology, Komi Science Centre, Urals Branch of Russian Academy of Sciences

Email: byvalov@nextmail.ru
Russia, 610000, Kirov; Russia, 167982, Komi Republic, Syktyvkar

B. Ananchenko

Vyatka State University

Email: byvalov@nextmail.ru
Russia, 610000, Kirov

I. Konyshev

Vyatka State University; Institute of Physiology, Komi Science Centre, Urals Branch of Russian Academy of Sciences

Email: byvalov@nextmail.ru
Russia, 610000, Kirov; Russia, 167982, Komi Republic, Syktyvkar

L. Dudina

Vyatka State University; Institute of Physiology, Komi Science Centre, Urals Branch of Russian Academy of Sciences

Email: byvalov@nextmail.ru
Russia, 610000, Kirov; Russia, 167982, Komi Republic, Syktyvkar

S. Konnova

Institute of Fundamental Medicine and Biology, Kazan (Privolzhsky) Federal University

Email: byvalov@nextmail.ru
Russia, 420008, Republic of Tatarstan, Kazan

E. Rozhina

Institute of Fundamental Medicine and Biology, Kazan (Privolzhsky) Federal University

Email: byvalov@nextmail.ru
Russia, 420008, Republic of Tatarstan, Kazan

R. Fakhrullin

Institute of Fundamental Medicine and Biology, Kazan (Privolzhsky) Federal University

Email: byvalov@nextmail.ru
Russia, 420008, Republic of Tatarstan, Kazan

A. Byvalov

Vyatka State University; Institute of Physiology, Komi Science Centre, Urals Branch of Russian Academy of Sciences

Autor responsável pela correspondência
Email: byvalov@nextmail.ru
Russia, 610000, Kirov; Russia, 167982, Komi Republic, Syktyvkar

Bibliografia

  1. Книрель Ю.А., Анисимов А.П. 2012. Липополисахарид чумного микроба Yersinia pestis: cтруктура, генетика, биологические свойства. Acta Naturae. 4 (3), 49–61.
  2. Leo J.C., Skurnik M. 2011. Adhesins of human pathogens from the genus Yersinia. Adv. Exp. Med. Biol. 715, 1–15.
  3. Конышев И.В., Иванов С.А., Копылов П.Х., Анисимов А.П., Дентовская С.В., Бывалов А.А. 2022. Роль антигенов Yersinia pestis в адгезии к макрофагам J774. Прикладная биохимия и микробиология. 58 (4), 352–359.
  4. Park B.S., Lee J.O. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 45 (12), e66.
  5. Kim S.J., Kim H.M. 2017. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Rep. 50 (2), 55–57.
  6. Matsuura M., Takahashi H., Watanabe H., Saito S., Kawahara K. 2010. Immunomodulatory effects of Yersinia pestis lipopolysaccharides on human macrophages. Clin. Vaccine Immunol. 17 (1), 49–55.
  7. Yang K., He Y., Park C.G., Kang Y.S., Zhang P., Han Y., Cui Y., Bulgheresi S., Anisimov A.P., Dentovskaya S.V., Ying X., Jiang L., Ding H., Njiri O.A., Zhang S., Zheng G., Xia L., Kan B., Wang X., Jing H., Yan M., Li W., Wang Y., Xiamu X., Chen G., Ma D., Bartra S.S., Plano G.V., Klena J.D., Yang R., Skurnik M., Chen T. 2019. Yersinia pestis interacts with SIGNR1 (CD209b) for promoting host dissemination and infection. Front Immunol. 10, 96.
  8. Westphal O., Jann K. 1965. Bacterial lipopolysaccharides. Extraction with phenolwater and further applications of the procedure. Methodes Carbohydr. Chem. 5, 83–91.
  9. Ebner A., Wildling L., Gruber H.J. 2019. Functionalization of AFM tips and supports for molecular recognition force spectroscopy and recognition imaging. Methods Mol. Biol. 1886, 117–151.
  10. Pi J., Cai J. 2019. Cell topography and its quantitative imaging by AFM. In: Atomic Force Microscopy: Methods and Protocols. Eds Santos N.C., Carvalho F.A. New York: Humana New York, p. 99–113.
  11. Hutter J.L., Chen J., Wan W.K., Uniyal S., Leabu M., Chan B.M.C. 2005. Atomic force microscopy investigation of the dependence of cellular elastic moduli on glutaraldehyde fixation. J. Microscopy. 219 (2), 61–68.
  12. Vaure C., Liu Y. 2014. A comparative review of Toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 5, 316.
  13. Mahnke K., Becher E., Ricciardi-Castagnoli P., Luger T.A., Schwarz T., Grabbe S. 1997. CD14 is expressed by subsets of murine dendritic cells and upregulated by lipopolysaccharide. Adv. Exp. Med. Biol. 417, 145–159.
  14. Sabroe I., Jones E.C., Usher L.R., Whyte M.K.B., Dower S.K. 2002. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: A critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol. 168, 4701–4710.
  15. Choi S.-H., Harkewicz R., Lee J.H., Boullier A., Almazan F., Li A.C., Witztum J.L., Bae Y.S., Miller Y.I. 2009. Lipoprotein accumulation in macrophages via TLR4-dependent fluid phase uptake. Circ. Res. 104 (12), 1355–1363.
  16. Wei M.-T., Hua K.-F., Hsu J., Karmenyan A., Tseng K.-Y., Wong C.-H., Hsu H.-Y., Chiou A. 2007. The interaction of lipopolysaccharide with membrane receptors on macrophages pretreated with extract of Reishi polysaccharides measured by optical tweezers. Optics Express. 15, 11020–11032.
  17. Бывалов А.А., Белозёров В.С., Ананченко Б.А., Конышев И.В. 2022. Специфические и неспецифические взаимодействия липополисахарида Yersinia pseudotuberculosis с моноклональными антителами, охарактеризованные методом атомно-силовой микроскопии. Биофизика. 67 (6), 1056–1067.
  18. Arnal L., Longo G., Stupar P., Castez M.F., Cattelan N., Salvarezza R.C., Yantorno O.M., Kasas S., Vela M.E. 2015. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy. Nanoscale. 7 (41), 17 563–17 572.
  19. Richter W., Vogel V., Howe J., Steiniger F., Brauser F., Koch M.H.J., Roessle M., Gutsmann T., Garidel P., Mäntele W., Brandenburg K. 2010. Morphology, size distribution, and aggregate structure of lipopolysaccharide and lipid A dispersions from enterobacterial origin. Innate Immunity. 17 (5), 1–12.
  20. Bergstrand A., Svanberg C., Langton M., Nyden M. 2006. Aggregation behavior and size of lipopolysaccharide from Escherichia coli O55:B5. Colloids Surf. B Biointerfaces. 53 (1), 9–14.
  21. Santos N.C., Silva A.C., Castanho M.A., Martins-Silva J., Saldanha C. 2003. Evaluation of lipopolysaccharide aggregation by light scattering spectroscopy. Chembiochem. 4 (1), 96–100.
  22. Yang K., Park C.G., Cheong C., Bulgheresi S., Zhang S., Zhang P., He Y., Jiang L., Huang H., Ding H., Wu Y., Wang S., Zhang L., Li A., Xia L., Bartra S.S., Plano G.V., Skurnik M., Klena J.D., Chen T. 2015. Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination. Immunol. Cell Biol. 93 (9), 815–824.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (96KB)
3.

Baixar (357KB)
4.

Baixar (232KB)
5.

Baixar (111KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2023