Stratification and combustion of hydrogen-air mixtures in vertical channel
- Autores: Yakovlev S.A.1, Stakhanov V.V.1, Bezgodov E.V.1, Tarakanov A.A.1, Popov I.A.1, Pasyukov S.D.1, Nikiforov M.V.1
 - 
							Afiliações: 
							
- Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
 
 - Edição: Volume 44, Nº 9 (2025)
 - Páginas: 82-92
 - Seção: Combustion, explosion and shock waves
 - URL: https://vietnamjournal.ru/0207-401X/article/view/690778
 - DOI: https://doi.org/10.31857/S0207401X25090073
 - ID: 690778
 
Citar
Texto integral
Resumo
In the current work, experimental investigation of propagation and combustion of a inhomogeneous hydrogen-air mixture in a vertical channel were conducted. The average volume fraction of hydrogen varied from 10 to 30%. Data on the dynamics of hydrogen propagation along the channel height were obtained. In combustion experiments, data on the flame front propagation velocity and excess pressure were obtained. The effect of the mixture non-uniformity on combustion characteristics was estimated.
Palavras-chave
Sobre autores
S. Yakovlev
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
														Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
V. Stakhanov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
														Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
E. Bezgodov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
														Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
A. Tarakanov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
														Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
I. Popov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
														Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
S. Pasyukov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
														Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
M. Nikiforov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
							Autor responsável pela correspondência
							Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
Bibliografia
- Qingchun H., Xihong Z., Hog H. // Int. J. Hydrogen Energy. 2022. V. 48. P. 13705. https://doi.org/10.1016/j.ijhydene.2022.11.302
 - Gelfand B.E., Silnikov M.B., Medvedev S.P., Khomik S.V. Termogazodinamika goreniya i vzryva vodoroda. St Peterburg.: St. Petersburg Polytechnic University Press, 2009 [In Russian].
 - Vollmer K., Ettner F., Sattelmayer T. // Combustion Sci. Techn. 2012. V. 184. № 10—11. P. 1903. https://doi.org/10.1080/00102202.2012.690652
 - Vollmer K., Ettner F., Sattelmayer T. // Sci. Techn. Energetic Mater: J. Japan Explosive Soc. 2011. V. 72. P. 74.
 - Ciccarelli G., Dorofeev S. // Progress Energy Comb. Sci. 2008. V. 34. P. 499. https://doi.org/10.1016/j.pecs.2007.11.002
 - Scarpa R., Studer E., Kudriakov S. et al. // Int. J. Hydrogen Energy. 2019. V. 44. P. 9009. https://doi.org/10.1016/j.ijhydene.2018.06.160
 - Rudy W., Kuznetsov M., Porowski R. et al. // Proc. Combustion Instit. 2013. V. 34. № 2. P. 1965. https://doi.org/10.1016/j.proci.2012.07.019
 - Wang L., Ma H., Shen Z. et al. // Int. J. Hydrogen Energy. 2018. V. 43. № 9. P. 4645. https://doi.org/10.1016/ j.ijhydene.2018.01.080
 - Dorofeev S., Kuznetsov M., Alekseev V. et al. // J. Loss Prev. Proc. Ind. 2001. V. 14. № 6. P. 583. https://doi.org/10.1016/S0950-4230(01)00050-X
 - Veser A., Breitung W., Dorofeev // J. Phys. IV. 2002. V. 12. № 7. Р. 333. https://doi.org/10.1051.jp4:20020301
 - Peraldi O., Knystautus R., Lee J. // Proc. 21th Combust. Symp. (Intern.) on Combust. Elsevier, 1988. V. 21. Issue 1. Р. 1629. https://doi.org/10.1016/S0082-0784(88)80396-5
 - Boeck L. R. Dis. doktor – ingenieurs. München: Techn. Universität München Institut für Energietechnik, 2015.
 - Bentaib A., Bleyer A., Meynet N. et al. // Ann. Nucl. Energy. 2014. V. 74. P. 143. https://doi.org/10.1016/j.anucene.2014.07.012
 - Bentaib A., Bleyer A., Heinz W. et al. // ERMARS. 2007.
 - Kuznetsov M., Alekseev V., Dorofeev S. et al. // Proc. Symp. (Intern.) on Combustion. Elsevier, 1998. V. 27. № 2. Р. 2241. https://doi.org/10.1016/S0082-0784(98)80073-8
 - Kuznetsov M., Yanez J., Grune J. et al. // Nucl. Eng. Design. 2015. V. 286. P. 36. https://doi.org/10.1016/j.nucengdes.2015.01.016
 - Friedrich A., Grune J., Sempert K. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 17. P. 9041. https://doi.org/10.1016/j.ijhydene.2018.06.098
 - Yakovlev S. A., Bezgodov E. V., Stakhanov V. V. et al. // Atomic Energy. 2023. V. 134. № 5-6. P. 380. https://doi.org/10.1007/s10512-024-01069-9
 - Dorofeev S.B., Sidorov V.P. Dvoinishnikov A.E. // Comb. and Flame. 1996. V. 104. P. 95. https://doi.org/10.1016/0010-2180(95)00113-1
 - Kiverin A.D., Medvedkov I.S., Yakovenko I.S. // Russ. J. Phys. Chem. B. 2022. V. 16. №6. P.1075. https://doi.org/10.1134/s1990793122060057
 - Medvedev S.P., Maximova O.G., Cherepanova T.T. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 6. P. 1112. https://doi.org/10.1134/s1990793122060082
 - Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 974. https://doi.org/10.1134/s1990793123040309
 - Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1294. https://doi.org/10.1134/s1990793123060246
 - Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 4. P. 965. https://doi.org/10.1134/s1990793124700416
 - Guide for the Verification and Validation of Computational Fluid Dynamics Simulations. American Institute of Aeronautics and Astronautics. 1998.
 - Baraldi D., Melideo D., Kotchourko A. et al. // Int. J. Hydrogen Energy. 2017. V. 42. № 11. P. 7633. https://doi.org/10.1016/j.ijhydene.2016.05.212
 - Belyaev P.E., Makeeva I.R., Mastyuk D.A. et al. // Abstr. Rep. XVII All-Russian Sympos. on Combust., 2024. P. 128 [In Russian]. ISBN: 978-5-91845-116-8
 
Arquivos suplementares
				
			
						
						
					
						
						
									


