Fluorescence labeling of GC-rich DNA matrix with different nucleotide derivatives for hybridization analysis on a biological microarray

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We investigated the efficiency of labeling the GC-rich promoter region of the TERT gene in the human genome with derivatives of 5′-triphosphates of 2′-deoxyuridine (dU) and 2'-deoxycytidine (dC) containing cyanine dyes Cy5 and Cy7 as a fluorescent label. The effect of modified nucleotides on the efficiency of the polymerase chain reaction was evaluated by real-time PCR, and the extent of nucleotide incorporation into the PCR product was also determined. The efficiency of DNA matrix labeling was determined by the intensity of fluorescent signal during allele-specific hybridization on a biological microarray. The highest level of biochip cell fluorescence was observed for dU-Cy7 derivatives compared to dU- and dC-Cy5 derivatives. At the same time, in the case of GC-rich DNA matrix, the use of dC-Cy5 derivatives gave a fundamentally better result compared to dU-Cy5 derivative. Thus, modified Cy7 analogs capable of incorporation into DNA during PCR are less dependent on the GC composition of the DNA matrix and are more universal fluorescent labels for diagnostic purposes. Further application of modified Cy7 analogs in the development of laboratory-on-a-chip test systems seems to be the most promising.

全文:

受限制的访问

作者简介

I. Barinova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: tanased06@rambler.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

V. Shershov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: tanased06@rambler.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

V. Varachev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: tanased06@rambler.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

S. Surzhikov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: tanased06@rambler.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

I. Grechishnikova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: tanased06@rambler.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

О. Zasedateleva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: tanased06@rambler.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

T. Nasedkina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: tanased06@rambler.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

А. Chudinov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: tanased06@rambler.ru
俄罗斯联邦, ul. Vavilova 32, Moscow, 119991

参考

  1. Stumpf A., Brandstetter T., Hübner J., Rühe J. // PLoS One. 2019. V. 14. P. e0225525. https://doi.org/10.1371/journal.pone.0225525
  2. Dullaert-de Boer M., Akkerman O.W., Vermeer M., Hess D.L.J., Kerstjens H.A.M., Anthony R.M., van der Werf T.S., van Soolingen D., van der Zanden A.G.M. // PLoS One. 2018. V. 13. P. e0190847. https://doi.org/10.1371/journal.pone.0190847
  3. Ikonnikova A.Y., Filippova M.A., Surzhikov S.A., Pozhitnova V.O., Kazakov R.E., Lisitsa T.S., Belkov S.A., Nasedkina T.V. // Drug Metab. Pers. Ther. 2020. V. 36. P. 33–40. https://doi.org/10.1515/dmpt-2020-0155
  4. Leevy W.M., Gammon S.T., Johnson J.R., Lampkins A.J., Jiang H., Marquez M., Piwnica-Worms D., Suckow M.A., Smith B.D. // Bioconj. Chem. 2008. V. 19. P. 686–692. https://doi.org/10.1021/bc700376v
  5. Шершов В.Е., Иконникова А.Ю., Василисков В.А., Лапа С.А., Мифтахов Р.А., Кузнецова В.Е., Чудинов А.В., Наседкина Т.В. // Биофизика. 2020. Т. 65. С. 865–871. https://doi.org/10.31857/S0006302920050038
  6. Фесенко Д.О., Гусейнов Т.О., Лапа С.А., Кузнецова В.Е., Шершов В.Е., Спицын М.А., Наседкина Т.В., Заседателев А.С., Чудинов А.В. // Мол. биология. 2018. Т. 52. С. 533–542. https://doi.org/10.7868/S0026898418030175
  7. Иконникова А.Ю., Шершов В.Е., Мороз Ю.В., Василисков В.А., Лапа С.А., Мифтахов Р.А., Кузнецова В.Е., Чудинов А.В., Наседкина Т.В. // Биофизика. 2021. Т. 66. С. 31–39. https://doi.org/10.31857/S000630292101004X
  8. Bell R.J., Rube H.T., Xavier-Magalhães A., Costa B.M., Mancini A., Song J.S., Costello J.F. // Mol. Cancer Res. 2016. V. 14. P. 315–323. https://doi.org/10.1158/1541-7786.MCR-16-0003
  9. Фесенко Д.О., Абрамов И.С., Шершов В.Е., Кузнецова В.Е., Суржиков С.А., Гречишникова И.В., Барский В.Е., Чудинов А.В., Наседкина Т.В. // Мол. биология. 2018. Т. 52. С. 997–1005. https://doi.org/10.1134/S0026898418060071
  10. Lapa S.A., Volkova O.S., Spitsyn M.A., Shershov V.E., Kuznetsova V.E., Guseinov T.O., Zasedatelev A.S., Chudinov A.V. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 263–272. https://doi.org/10.1134/S1068162019040046
  11. Иконникова А.Ю., Лисица Т.С., Шершов В.Е., Спицын М.А., Гусейнов Т.О., Фесенко Д.О., Лапа С.А., Кузнецова В.Е., Заседателев А.С., Чудинов А.В., Наседкина Т.В. // Биофизика. 2017. Т. 62. С. 1093–1098.
  12. Boyer A.E., Lipowska M., Zen J.-M., Patonay G. // Anal. Lett. 1992. V. 25. P. 415–428. https://doi.org/10.1080/00032719208016105
  13. Varachev V.O., Guskov D.A., Shekhtman A.P., Rogozhin D.V., Polyakov S.A., Zacedatelev A.S., Chudinov A.V., Nasedkina T.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1137–1142. https://doi.org/10.1134/S1068162023050205
  14. Varachev V., Shekhtman A., Guskov D., Rogozhin D., Zasedatelev A., Nasedkina T. // Diagnostics (Basel). 2024. V. 14. P. 200. https://doi.org/10.3390/diagnostics14020200

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of fluorescently labeled analogues of nucleotides of the Cy5 (a) and Cy7 (b) series.

下载 (1MB)
3. Fig. 2. Efficiency of PCR in the presence of different concentrations of fluorescently labeled nucleotide analogues (a) and efficiency of incorporation into the growing DNA chain (b).

下载 (1MB)
4. Fig. 3. Results of hybridization analysis on a biochip of a sample with the C/C genotype at position –146 C>T of the TERT promoter for various fluorescently labeled nucleotide analogs at a concentration of 16 μM. (a) – Hybridization patterns for a biochip fragment containing probes –146 C and –146 T; (b) – normalized fluorescence signal from cells containing a perfect duplex; (c) – discrimination ratio (the dotted line is the threshold value equal to 1.5; the area highlighted in blue includes discrimination ratio values ​​below 1.5, at which unambiguous determination of the C/C genotype for a given point is impossible.

下载 (859KB)

版权所有 © Russian Academy of Sciences, 2025