Combined effects of senexin B and antitumour agents on neuroblastoma and glioblastoma cell lines

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Neurogenic tumors such as neuroblastoma and glioblastoma are highly heterogeneous and particularly aggressive: they are characterized by rapid growth, metastasis and resistance to treatment. Both tumors exhibit MYCN oncogene copy-number disruption, impaired gene transcription, and overall high transcriptional deregulation. In this study, we evaluated the survival of glioblastoma and neuroblastoma cells and performed real-time PCR analysis to assess the change in expression of MYCN, HAND2, PHOX2A, and PHOX2B oncogenes after exposure to senecin B in combination with temozolomide and the potential therapeutic agent 10058-F4. As a result, a trend of increased PHOX2B gene expression and decreased PHOX2A gene expression after drug exposure was observed in one of the neuroblastoma lines and both glioblastoma lines, an increase in MYCN and HAND2 gene expression was also observed. Viability tests showed that substance 10058-F4 was effective against neuroblastoma line but not glioblastoma lines. However, senexin B enhanced the inhibitory effect of 10058-F4 on glioblastoma cell lines and also enhanced the effect of temozolomide on the T98G cell line.

全文:

受限制的访问

作者简介

D. Mazur

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: nadine.antipova@gmail.com
俄罗斯联邦, ul. Miklukho-Maklaya 16/10, Moscow, 117997

S. Pogodaeva

ITMO University

Email: nadine.antipova@gmail.com
俄罗斯联邦, Kronverksky prosp. 49, liter A, St. Petersburg, 197101

O. Kuchur

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; ITMO University

Email: nadine.antipova@gmail.com
俄罗斯联邦, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Kronverksky prosp. 49, liter A, St. Petersburg, 197101

O. Miletina

ITMO University

Email: nadine.antipova@gmail.com
俄罗斯联邦, Kronverksky prosp. 49, liter A, St. Petersburg, 197101

A. Rezekina

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: nadine.antipova@gmail.com
俄罗斯联邦, 117997 Москва, улица Миклухо-Маклая, 16/10

E. Petrosyan

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: nadine.antipova@gmail.com
俄罗斯联邦, ul. Miklukho-Maklaya 16/10, Moscow, 117997

D. Rudik

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: nadine.antipova@gmail.com
俄罗斯联邦, ul. Miklukho-Maklaya 16/10, Moscow, 117997

Е. Ivanova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: nadine.antipova@gmail.com
俄罗斯联邦, ul. Miklukho-Maklaya 16/10, Moscow, 117997

А. Shtil

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; N.N. Blokhin National Medical Research Centre for Oncology

Email: nadine.antipova@gmail.com
俄罗斯联邦, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Kashirskoye shosse 23, Moscow, 115522

N. Antipova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; National Research University “Higher School of Economics”

编辑信件的主要联系方式.
Email: nadine.antipova@gmail.com
俄罗斯联邦, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Profsoyuznaya 33/4, Moscow, 101000 Russia

参考

  1. Boeva V., Louis-Brennetot C., Peltier A., Durand S., Pierre-Eugène C., Raynal V., Etchevers H.C., Thomas S., Lermine A., Daudigeos-Dubus E., Geoerger B., Orth M.F., Grünewald T.G.P., Diaz E., Ducos B., Surdez D., Carcaboso A.M., Medvedeva I., Deller T., Janoueix-Lerosey I. // Nat. Genet. 2017. V. 49. P. 1408–1413. https://doi.org/10.1038/ng.3921
  2. Jacob F., Salinas R.D., Zhang D.Y., Nguyen P.T.T., Schnoll J.G., Wong S.Z.H., Thokala R., Sheikh S., Saxena D., Prokop S., Liu D.-A., Qian X., Petrov D., Lucas T., Chen H.I., Dorsey J.F., Christian K.M., Binder Z.A., Nasrallah M., Song H. // Cell. 2020. V. 180. P. 188–204. https://doi.org/10.1016/j.cell.2019.11.036
  3. Karadkhelkar N.M., Lin M., Eubanks L.M., Janda K.D. // J. Am. Chem. Soc. 2023. V. 145. P. 3259– 3269. https://pubs.acs.org/doi/10.1021/jacs.2c12732
  4. Müller I., Larsson K., Frenzel A., Oliynyk G., Zirath H., Prochownik E.V., Westwood N.J., Henriksson M.A. // PLoS One. 2014. V. 9. P. e97285. https://doi.org/10.1371/journal.pone.0097285
  5. Bjerke L., Mackay A., Nandhabalan M., Burford A., Jury A., Popov S., Bax D.A., Carvalho D., Taylor K.R., Vinci M., Bajrami I., McGonnell I.M., Lord C.J., Reis R.M., Hargrave D., Ashworth A., Workman P., Jones C. // Cancer Discov. 2013. V. 3. P. 512–519. https://doi.org/10.1158/2159-8290.CD-12-0426
  6. Hodgson J.G., Yeh R.-F., Ray A., Wang N.J., Smirnov I., Yu M., Hariono S., Silber J., Feiler H.S., Gray J.W., Spellman P.T., Vandenberg S.R., Berger M.S., James C.D. // Neuro Oncol. 2009. V. 11. P. 477–487. https://doi.org/10.1215/15228517-2008-113
  7. Čančer M., Drews L.F., Bengtsson J., Bolin S., Rosén G., Westermark B., Nelander S., Forsberg-Nilsson K., Uhrbom L., Weishaupt H., Swartling F.J. // Cell Death Dis. 2019. V. 10. P. 881. https://doi.org/10.1038/s41419-019-2120-1
  8. Wang B., Wu Z.-H., Lou P.-Y., Chai C., Han S.-Y., Ning J.-F., Li M. // Cell Oncol. 2019. V. 42. P. 783–799. https://doi.org/10.1007/s13402-019-00461-z
  9. Liang J., Chen M., Hughes D., Chumanevich A.A., Altilia S., Kaza V., Lim C.-U., Kiaris H., Mythreye K., Pena M.M., Broude E.V., Roninson I.B. // Cancer Res. 2018. V. 78. P. 6594–6606. https://doi.org/10.1158/0008-5472.can-18-1583
  10. Sharko A.C., Lim C.-U., McDermott M.S.J., Hennes C., Philavong K.P., Aiken T., Tatarskiy V.V., Roninson I.B., Broude E.V. // Cells. 2021. V. 10. P. 144. https://doi.org/10.3390/cells10010144
  11. Ding X., Sharko A.C., McDermott M.S.J., Schools G.P., Chumanevich A., Ji H., Li J., Zhang L., Mack Z.T., Sikirzhytski V., Shtutman M., Ivers L., O’Donovan N., Crown J., Győrffy B., Chen M., Roninson I.B., Broude E.V. // Proc. Natl. Acad. Sci. USA. 2022. V. 119. P. e2201073119. https://doi.org/10.1073/pnas.2201073119
  12. Zaatiti H., Abdallah J., Nasr Z., Khazen G., Sandler A., Abou-Antoun T.J. // Int. J. Oncol. 2018. V. 52. P. 787– 803. https://doi.org/10.3892/ijo.2018.4236
  13. Mercatelli D., Balboni N., Palma A., Aleo E., Sanna P.P., Perini G., Giorgi F.M. // Biomolecules. 2021. V. 52. P. 177. https://doi.org/10.3390/biom11020177
  14. Moody C.L., Wheelhouse R.T. // Pharmaceuticals (Basel). 2014. V. 7. P. 797–838. https://doi.org/10.3390/ph7070797
  15. McDermott M.S.J., Chumanevich A.A., Lim C.-U., Liang J., Chen M., Altilia S., Oliver D., Rae J.M., Shtutman M., Kiaris H., Győrffy B., Roninson I.B., Broude E.V. // Oncotarget. 2017. V. 8. P. 12558–12575. https://doi.org/10.18632/oncotarget.14894
  16. Li J., Hilimire T.A., Liu Y., Wang L., Liang J., Gyorffy B., Sikirzhytski V., Ji H., Zhang L., Cheng C., Ding X., Kerr K.R., Dowling C.E., Chumanevich A.A., Mack Z.T., Schools G.P., Lim C.-U., Ellis L., Zi X., Chen M. // J. Clin. Invest. 2024. V. 134. P. e176709. https://doi.org/10.1172/jci176709

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Survival (% of cells) of GBM (a–g) and NB (d–f) lines after 72-hour incubation with 10058-F4 and TMZ. Survival values ​​in the control are taken as 100%.

下载 (1MB)
3. Fig. 2. Relative expression of supertarget genes in NB (a, b) and GBM (c, d) cell lines after 24 h of incubation. Concentrations: 10058-F4 – 40 μM, TMZ – 50 (NB) and 250 μM (GBM); SenB – 1 μM 1 h before addition of other compounds. Average values ​​(relative to the PCR amplification product of 18S RNA) and standard deviations from the results of three independent measurements are shown.

下载 (1MB)
4. Fig. 3. Survival (in % of cells) after 24-h incubation of NB (a, b) and GBM (c, d) cell lines with substances and their combinations. The substances were added in the following concentrations: 10058-F4 – 40 μM, TMZ – 50 (NB) and 250 μM (GBM); SenB – 1 μM 1 h before the other substances. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2025