Synthesis and study of cytotoxicity of 3β-acetoxyurs-12-en-28-oyl-thiourea derivatives
- Autores: Popov S.A.1, Borisova T.D.1,2, Shults E.E.1, Marenina М.К.1, Meshkova Y.V.1, Tolstikova T.G.1
-
Afiliações:
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State Technical University
- Edição: Volume 51, Nº 3 (2025)
- Páginas: 418-431
- Seção: ОБЗОРНАЯ СТАТЬЯ
- URL: https://vietnamjournal.ru/0132-3423/article/view/686914
- DOI: https://doi.org/10.31857/S0132342325030053
- EDN: https://elibrary.ru/KQDCCS
- ID: 686914
Citar
Resumo
The interaction of 3β-acetoxyurs-12-en-28-oyl chloride with potassium rhodanide afforded 3β-acetoxyurs-12-en-28-oyl isothiocyanate. A series of substituted 3β-acetoxy-urs-12-en-28-oyl-thioureas was synthesised in yields of 69–88% by condensation of triterpene acyl isothiocyanate with a series of amino derivatives. The CuAAC cycloaddition reaction of N-(2-azidoethylcarbamothioyl)-3-acetoxyurs-12-en-28-oyl-amide with propargyl alcohol and 3-(prop-2-inyloxy)-4,5-((R,S)-methoxymethylenedioxy)-benzoate led to the formation of hybrid acylthioureas containing a 1,2,3-triazole linker in 72 and 75% yields. In CuAAC reactions of N-(prop-2-ynylcarbamothioyl)-3β-acetoxyurs-12-en-28-oylamide with substituted acylthiourea azides containing 1,2,3-triazole were isolated in moderate yields of 48–62%. The use of one-pot-reactor version of the synthesis with the preparation of substituted (1H-1,2,3-triazol-4-yl)methanamines in the reaction of propargylamine with substituted azides followed by condensation with 3β-acetoxyurs-12-en-28-oyl isothiocyanate increased the yield of 1,2,3-triazole-containing acylthioureas to 65–85%. Polar triterpene acylthioureas containing carboxyl or alcohol groups exhibited high inhibitory activity against HepG2 cells, significantly superior to the parent compound ursolic acid, and were also more selective than the drug doxorubicin. Among the acylthioureas, products of CuAAC cycloaddition, the most active was the polar derivative with (1H-1,2,3-triazol-4-yl)methanol substituent, which was cytotoxic to all cells tested, including the non-tumour control, but superior in selectivity to doxorubicin. Ursane hybrids with acylthiourea derivatives are of interest for further investigation as promising antitumour agents.
Palavras-chave
Texto integral

Sobre autores
S. Popov
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: spopov@nioch.nsc.ru
Rússia, prosp. Akad. Lavrentyevа 9, Novosibirsk, 630090
T. Borisova
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University
Email: spopov@nioch.nsc.ru
Rússia, prosp. Akad. Lavrentyevа 9, Novosibirsk, 630090; prosp. K. Marksa 20, Novosibirsk 630073
E. Shults
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: spopov@nioch.nsc.ru
Rússia, prosp. Akad. Lavrentyevа 9, Novosibirsk, 630090
М. Marenina
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: spopov@nioch.nsc.ru
Rússia, prosp. Akad. Lavrentyevа 9, Novosibirsk, 630090
Yu. Meshkova
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: spopov@nioch.nsc.ru
Rússia, prosp. Akad. Lavrentyevа 9, Novosibirsk, 630090
T. Tolstikova
Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: spopov@nioch.nsc.ru
Rússia, prosp. Akad. Lavrentyevа 9, Novosibirsk, 630090
Bibliografia
- Xing Y.L., Bi L.W., Zhao Z.D., Xia T.J. // Adv. Mater. Res. 2013. V. 781. P. 787–791. https://doi.org/10.4028/www.scientific.net/AMR.781-784.787
- Jäger S., Trojan H., Kopp T., Laszczyk M.N., Scheffler A. // Molecules. 2009. V. 14. P. 2016–2031. https://doi.org/10.3390/molecules14062016
- López-Hortas L., Pérez-Larrán P., González-Muñoz M.J., Falqué E., Domínguez H. // Food Res. Int. 2018. V. 103. P. 130–149. https://doi.org/10.1016/j.foodres.2017.10.028
- Pironi A.M., de Araújo P.R., Fernandes M.A., Salgado H.R.N., Chorilli M. // Crit. Rev. Anal. Chem. 2018. V. 48. P. 86–93. https://doi.org/10.1080/10408347.2017.1390425
- Nistor G., Trandafirescu C., Prodea A., Milan A., Cristea A., Ghiulai R., Racoviceanu R., Mioc A., Mioc M., Ivan V. // Molecules. 2022. V. 27. P. 6552. https://doi.org/10.3390/molecules27196552
- Wei Z.-Y., Chi K.-Q., Wang K.-S., Wu J., Liu L.-P., Piao H.-R. // Bioorg. Med. Chem. Lett. 2018. V. 28. P. 1797–1803. https://doi.org/10.1016/j.bmcl.2018.04.021
- Wang W., Lei L., Liu Z., Wang H., Meng Q. // Molecules. 2019. V. 24. P. 877. https://doi.org/10.3390/molecules24050877
- Viji V., Helen A., Luxmi V.R. // Br. J. Pharmacol. 2011. V. 162. P. 1291–1303. https://doi.org/10.1111/j.1476-5381.2010.01112.x
- Luan T., Jin C., Jin C.-M., Gong G.-H., Quan Z.-S. // J. Enzyme Inhib. Med. Chem. 2019. V. 34. P. 761–772. https://doi.org/10.1080/14756366.2019.1584622
- Larik F.A., Shah M.S., Saeed A., Shah H.S., Channar P.A., Bolte M., Iqbal J. // Int. J. Biol. Macromol. 2018. V. 116. P. 144–150. https://doi.org/10.1016/j.ijbiomac.2018.05.001
- Aly A.A., Ahmed E.K., El-Mokadem K.M., Hegazy M.E.A.F. // J. Sulfur Chem. 2007. V. 28. P. 73–93. https://doi.org/10.1080/17415990601124691
- Saeed A., Flörke U., Erben M.F. // J. Sulfur Chem. 2014. V. 35. P. 318–355. https://doi.org/10.1080/17415993.2013.834904
- Saeed A., Erben M.F., Bolte M. // Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013. V. 102. P. 408– 413. https://doi.org/10.1016/j.saa.2012.10.043
- Mahmood A., Shah S.J.A., Iqbal J. // Eur. J. Med. Chem. 2022. V. 231. P. 114162. https://doi.org/10.1016/j.ejmech.2022.114162
- Asegbeloyin J.N., Oyeka E.E., Okpareke O., Ibezim A. // J. Mol. Struct. 2018. V. 1153. P. 69–77. https://doi.org/10.1016/j.molstruc.2017.09.093
- Li Z., Zhang Y., Wang Y. // Phosphorus, Sulfur Silicon Relat. Elem. 2003. V. 178. P. 293–297. https://doi.org/10.1080/10426500307952
- del Campo R., Criado J.J., Gheorghe R., González F.J., Hermosa M.R., Sanz F., Manzano J.L., Monte E., Rodrı́guez-Fernández E. // J. Inorg. Biochem. 2004. V. 98. P. 1307–1314. https://doi.org/10.1016/j.jinorgbio.2004.03.019
- Huang X., Huang R., Liao Z., Pan Y., Gou S., Wang H. // Eur. J. Med. Chem. 2016. V. 108. P. 381– 391. https://doi.org/10.1016/j.ejmech.2015.12.008
- Huang X.-C., Wang M., Pan Y.-M., Yao G.-Y., Wang H.-S., Tian X.-Y., Qin J.-K., Zhang Y. // Eur. J. Med. Chem. 2013. V. 69. P. 508–520. https://doi.org/10.1016/j.ejmech.2013.08.055
- Liu J., Lu Y., Wang J., Bi L., Zhao Z. // Chinese J. Org. Chem. 2017. V. 37. P. 731–738. https://doi.org/10.6023/cjoc201610017
- Baltina L.A., Davydova V.A., Tolstikova T.G., Zarudii F.A., Kondratenko R.M., Tolstikov G.A. // Pharm. Chem. J. 1991. V. 25. P. 705–710.
- Popov S., Qi Z., Wang C., Shults E. // J. Sulfur Chem. 2023. P. 523–541. https://doi.org/10.1080/17415993.2023.2193669
- Popov S.A., Semenova M.D., Baev D.S., Frolova T.S., Shestopalov M.A., Wang C., Qi Z., Shults E.E., Turks M. // Steroids. 2020. V. 162. P. 108698. https://doi.org/10.1016/j.steroids.2020.108698
- Sang S., Lapsley K., Rosen R.T., Ho C.-T. // J. Agric. Food Chem. 2002. V. 50. P. 607–609. https://doi.org/10.1021/jf0110194
- Tkachev A.V., Denisov A.Y. // Tetrahedron. 1994. V. 50. P. 2591–2598. https://doi.org/10.1016/S0040-4020(01)86975-1
- Qi Z., Xie P., Wang Z., Zhou H., Tao R., Popov S.A., Yang G., Shults E.E., Wang C. // Arab. J. Chem. 2024. V. 17. P. 105762. https://doi.org/10.1016/j.arabjc.2024.105762
Arquivos suplementares
