Ultrasonic Testing of Acoustic and Elastic Properties of 12Cr18Ni10Ti Steel Irradiated with Fast Electrons
- Авторлар: Vasiliev A.V.1, Biryukov D.Y.1, Kostin V.N.2, Zatsepin A.F.1
-
Мекемелер:
- Yeltsin Ural Federal University
- Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
- Шығарылым: № 3 (2025)
- Беттер: 3-13
- Бөлім: Acoustic methods
- URL: https://vietnamjournal.ru/0130-3082/article/view/682817
- DOI: https://doi.org/10.31857/S0130308225030018
- ID: 682817
Дәйексөз келтіру
Аннотация
Special steel grades such as ChS-68 and 12Cr18Ni10Ti are used in nuclear power engineering, the space industry, medicine and other important areas of the technical sphere, and during operation are exposed to various types of destructive effects, including radiation load. This paper presents the results of a study of the effect of high-energy electron radiation on the acoustic properties of austenitic stainless-steel grade 12Х18Н10Т. It was experimentally established that after exposure to electrons with an energy of 10 MeV, such parameters as the attenuation coefficient of ultrasound and the propagation velocity of transverse waves and Rayleigh waves change. These changes are due to defect formation and structural modifications of the material caused by radiation exposure. The obtained data allow us to conclude that it is necessary to take into account changes in the acoustic properties of steels when assessing their performance under radiation exposure.
Негізгі сөздер
Толық мәтін

Авторлар туралы
Alexey Vasiliev
Yeltsin Ural Federal University
Хат алмасуға жауапты Автор.
Email: vasilev.a.v98@list.ru
Ресей, 19, Mir St., Yekaterinburg, 620002
Dmitry Biryukov
Yeltsin Ural Federal University
Email: bir-70@list.ru
Ресей, 19, Mir St., Yekaterinburg, 620002
Vladimir Kostin
Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: kostin@imp.uran.ru
Ресей, 18, S. Kovalevskaya St., Yekaterinburg, 620108
Anatoly Zatsepin
Yeltsin Ural Federal University
Email: a.f.zatsepin@urfu.ru
Ресей, 19, Mir St., Yekaterinburg, 620002
Әдебиет тізімі
- Pichkov S.N., Zakharov D.A., Khlybov A.A. Physical aspects of using waveguide lines for acoustic emission control of metal integrity of hull structures of nuclear power plants // Proceedings of the R. E. Alekseev NSTU. 2020. No. 4 (131). P. 63—70.
- Mitenkov F.M., Kaidalov V.B., Korotkov Yu.G., Panov V.A., Pichkov S.N. Methods of substantiating the resource of nuclear power plants. M.: Mashinostroenie, 2007. 445 p.
- Khlybov A.A. Ensuring the Operation of Large-Scale Structures Based on Technical Condition: Monograph. Nizhny Novgorod: NGPU Publishing House, 2008. 135 p. ISBN 978-5-85219-145-8.
- Vuolo M., Baiocco G., Barbieri S., Bocchini L., Giraudo M., Gheysens T., Ottolenghi A. Exploring innovative radiation shielding approaches in space: A material and design study for a wearable radiation protection spacesuit // Life Sciences in Space Research. 2017. No. 15. P. 69—78.
- Anders J., Braccini S., Carzaniga T.S., Casolaro P., Chatterjeeet M. A facility for radiation hardness studies based on a medical cyclotron //Journal of Instrumentation. 2022. V. 17. No. 04. P. P04021.
- De Azevedo A.M., Cardoso D.D.O., De Medeirjs M.P.C., Gavazza S., Morales R.K. Determination of steel and lead bi-laminated shielding for military vehicles // Brazilian Journal of Radiation Sciences. 2023. V. 11. No. 1A (Suppl.). P. 01—31.
- Adupa C., Prakash T. Chandhra, Ramchandar P., Tarun J. Radiation hardened circuits in multiple harsh environments //IOP Conference Series: Materials Science and Engineering // IOP Publishing. 2020. V. 981. No. 3. P. 032044.
- Pavan Kumar M., Lorenzo R. A review on radiation-hardened memory cells for space and terrestrial applications // International journal of circuit theory and applications. 2023. V. 51. No. 1. P. 475—499.
- Rockett L., Patel D., Danziger S., Wang J.J., Cronquist B. Radiation hardened FPGA technology for space applications / 2007 IEEE Aerospace Conference. IEEE. 2007. P. 1—7.
- Klyushnikov V.A., Mishakin V.V. Investigation of the effect of plastic deformation on acoustic and magnetic characteristics of austenitic and austenitic-ferritic steels // Bulletin of the Bauman Moscow State Technical University. Ser. Mechanical Engineering. 2018. No. 2 (119).
- Latypova D.R., Bugai D.E., Latypov O.R., Ryabukhina V.N. Investigation of corrosion of a contact pair of 09G2C/12H18N10T steels in technological environments of column equipment // Oil and gas business. 2020. V. 18. No. 6. P. 122—129.
- Jerin A., Karunakaran K. Minimizing maximum height of the profile on stainless steel of 12X18H10T for ECM //AIP Conference Proceedings. AIP Publishing. 2022. V. 2473. No. 1.
- Tkacheva A.A., Makarevich V.O., Korneeva E.K. Features of radiation resistance of steels and alloys: collection of scientific papers of the VI International Scientific and Practical Internet Conference of Students and Undergraduates, November 23-24, 2023 / comp.: A. P. Bezhok, I. A. Ivanov. Minsk : BNTU, 2023. P. 160—163.
- Muravyov V.V., Budrin A.Yu., Sintsov M.A. The effect of cyclically varying loads on shear and Rayleigh wave velocities in steel bars of various heat treatments // Intelligent systems in production. 2020. V. 18. No. 4. P. 4—10.
- Khlybov A.A., Uglov A.L., Ryabov D.A., Anosov M.S. Assessment of damage to structural metal materials by acoustic methods // Bulletin of IzhSTU named after M.T. Kalashnikov. 2022. V. 25. No. 4. P. 18—26.
- Khlybov A.A., Kabaldin Yu.G., Ryabov D.A., Anosov M.S., Shagatin D.A. Investigation of damage to 12X18H10T steel samples with low-cycle fatigue by non-destructive testing methods // Factory Laboratory. Diagnostics of materials. 2021. V. 87. No. 5. P. 61—67.
- Matlack K.H., Kim Jin-Yeon, Wall J., Qu J. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound //AIP Conference Proceedings. American Institute of Physics. 2014. V. 1581. No. 1. С. 1007—1013.
- Koskinen T.S., Leskelä E., Vippola M. Artificial Flaw Detection with Ultrasound in Austenitic Stainless Steel: дис. 2016.
- Okita T., Etoh J., Sagisaka M., Matsunaga T., Isobe Y., Freyer P.D., Huang Y., Wiezorek J.M.K., Garner F.A. Validation of ultrasonic velocity measurements for detecting void swelling in first-wall structural materials // Fusion Science and Technology. 2014. V. 66. No. 1. P. 77—82.
- Baev A.R., Asadchaya M.V., Sergeeva O.S., Konovalov G.E. Rayleigh wave propagation in solids with a technological protrusion // Instruments and measurement methods. 2011. № 2 (3).
- Zatsepin A.F. Acoustic measurements. Moscow: Yurait Publishing House, 2024. 209 p.
- Drouin D., Couture A.R., Joly D., Tastet X., Aimez V., Gauvin R. CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users // Scanning. 2007. May-Jun. V. 29. No. 3. P. 92—101.
- Kretov E.F. Ultrasonic flaw detection in power engineering. St. Petersburg: Radioavionika, 1995. 327 p.
- Vasiliev A.V., Biryukov D.Yu., Zatsepin A.F. A program for monitoring the attenuation coefficient of ultrasound and analyzing the microstructure of materials / Certificate of state registration of the computer program No. 2024669749 dated August 21. 2024.
- Brazhnikov N.I. Ultrasonic methods / Under the general editorship. Academician N. N. Shumilovsky; Phys. and phys.-chemical. methods for controlling the composition and properties of a substance. Moscow — Leningrad: Energiya, 1965. 248 p.
- Dalin M.A., Chertischev V.Yu., Krasnov I.S., Raevskikh A.N. Investigation of cases of «abnormal» attenuation of ultrasonic vibrations in blanks made of nickel heat-resistant alloys // Flaw detection. 2020. No. 12. P. 37—47.
- Podymova N.B., Ermolinsky A.B., Chernov M.S. Non-destructive testing of local microcracking of laboratory mineral samples using the acoustic method with a laser ultrasound source and its verification by X-ray computed tomography // Flaw detection. 2023. No. 10. P. 18—27.
- Muravyov V.V., Muravyova O.V., Vladykin A.L. Acoustic and electromagnetic properties of a martensitic-aging iron-chromium-nickel alloy with the addition of copper under mechanical tension // Flaw detection. 2023. No. 5. P. 12—20.
Қосымша файлдар
