On the Simultaneous Reduction of a Pair of Unitoid Matrices to Diagonal Form
- Autores: Ikramov K.D.1
 - 
							Afiliações: 
							
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
 
 - Edição: Volume 63, Nº 2 (2023)
 - Páginas: 227-229
 - Seção: General numerical methods
 - URL: https://vietnamjournal.ru/0044-4669/article/view/664888
 - DOI: https://doi.org/10.31857/S0044466923020084
 - EDN: https://elibrary.ru/BMSMML
 - ID: 664888
 
Citar
Texto integral
Resumo
Let A and B be Hermitian n*n matrices with A being nonsingular. According to a well-known theorem of matrix analysis, these matrices can be brought to diagonal form by one and the same Hermitian congruence transformation if and only if the matrix C = A-1B has a real spectrum and can be diagonalized by a similarity. An extension of this assertion to the case where two unitoid matrices are simultaneously reduced to diagonal form is stated and proved.
Palavras-chave
Sobre autores
Kh. Ikramov
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: ikramov@cs.msu.su
				                					                																			                												                								Moscow, Russia						
Bibliografia
- Horn R.A., Johnson C.R. Matrix Analysis. Cambridge: Cambridge University Press, 1985.
 - Икрамов Х.Д. К опыту спектральной теории для преобразований эрмитовой конгруэнции // Зап. научн. сем. ПОМИ. 2019. Т. 482. С. 114–119.
 
Arquivos suplementares
				
			
						
						
					
						
						
									


