ПРИМЕНЕНИЕ ГЛОБАЛЬНОЙ АДАПТИВНОЙ СЕТКИ В ПРОСТРАНСТВЕ СКОРОСТЕЙ ДЛЯ УМЕНЬШЕНИЯ ОСЦИЛЯЦИЙ, ВЫЗВАННЫХ “ЭФФЕКТОМ ЛУЧА”

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Возникновение осцилляций при численном решении методом дискретных скоростей нестационарных задач течения разреженного газа с разрывными граничными условиями является проблемой, известной в литературе как “эффект луча”. Этот эффект является существенным препятствием при численном интегрировании кинетических уравнений в режимах сильной неравновесности при малой частоте столкновений. Применение глобальной адаптации в скоростном пространстве позволяет во многих случаях уменьшить осцилляции макропараметров. Результаты использования данного алгоритма демонстрируются на решении двумерной задачи испарения при взаимодействии лазерного излучения с веществом. Библ. 26. Фиг. 9. Табл. 1.

Об авторах

А. А Фролова

ФИЦ ИУ РАН

Email: aafrolova@yandex.ru
Москва, Россия

Список литературы

  1. Анисимов С.И., Лукьянчук Б.С. Избранные задачи теории лазерной абляции // Успехи физ. наук. 2002. Т. 172. №3. С. 301–333.
  2. Анисимов С.И., Жаховский В.В., Иногамов Н.А. Нишихара К., Петров Ю.В., Хохлов В.А. Формирование кратера и откольной оболочки коротким лазерным импульсом // Матем. моделирование. 2006. T. 18. № 8. С. 111–122.
  3. Morozov A.A. Starinsky S.V. Bulgakov A.V. Pulsed laser ablation of binary compounds effect of time delay in component evaporation on ablation plume expansion // J. of Physics D:Applaid Physics. 2021. V. 54.№17. P. 175203.
  4. Старинский С.В., Шухов Ю.Г.,Булгаков А.В. Динамика импульсной лазерной абляции золота в вакууме в режимах синтеза наноструктурных пленок // Письма в журнал техн. физ. 2016. T. 42.№8. С. 45–52.
  5. Morozov A.A. Evtushenko, A.B. Bulgakov A.V. Gas-dynamic acceleration of laser-ablation plumes: Hyperthermal particle energies under thermal vaporization // Applied Physics Letters. 2015. V. 106.№5. P. 054107.
  6. Morozov A.A., Titarev V.A. Dynamics of planar gas expansion during nanosecond laser evaporation into a low-pressure background gas // Physics of Fluids .2022. V. 34№9. P. 096101. doi: 10.1063/5.0101119.
  7. Morozov A.A. Dynamics of gas cloud expansion under pulsed laser evaporation into vacuum // J. Phys. Conf. Ser. 2018. 1105. P. 012116.
  8. Morozov A.A. Mironova M.L. Numerical analysis of time-of-flight distributions of neutral particles for pulsed laser ablation of binary substances into vacuum // Appl. Phys. A. 2017. V. 123. P. 783.
  9. Bulgakova N.M. Bulgakov A.V. Pulsed laser ablation of solids: Transition from normal vaporization to phase explosion // Appl. Phys. A 2001. V. 73. P. 199–208.
  10. Itina T.E., Sentis M., Marine W. Synthesis of nanoclusters by nanosecond laser ablation: Direct Simulation Monte Carlo Modelling // Appl. Surf. 2006. Sci. 252. P. 4433–4438.
  11. Itina T.E., Marine W., Autric M. Monte Carlo simulation of pulsed laser ablation from two-component target into diluted ambient gas // Appl. Phys. A. 1997. V. 82.№7. P. 3536–3542.
  12. Austin Palya, Ranjbar О.A. , Lin Z., Volkov A.N. Kinetic simulations of laser-induced plume expansion into a background gas under conditions of spatial confinement // Intern. Journal of Heat and Mass Transfer. 2019. V. 132. P. 1029–1052.
  13. Bykov N.Y., Bulgakova N.M.,Bulgakov A.V.,Loukianov G.A. Pulsed laser ablation of metals in vacuum: DSMC study versus experiment // Appl. Phys. A. 2004. V. 79.№4. P. 1097–1100.
  14. Povarnitsyn M.E., Fokin V.B., Levashov P.R., Itina T.E. Molecular dynamics simulation of subpicosecond doublepulse laser ablation of metals // Physical Review B. 2015. V. 92. P. 174104.
  15. Morozov A.A., Titarev V.A. Kinetic study of time-of-flight Distribution during pulsed laser evaporation into vacuum // Physics of fluids. 2024. V. 36. P. 116112.
  16. Morozov A.A., Frolova A.A., Titarev V.A. On different kinetic approaches for computing planar gas expansion under pulsed evaporation into vacuum // Physics of fluids. 2020. V. 32.№11. P. 112005.
  17. Aoki K.,Takata S.,Aikawa H,Golse F. A rarefied gas flow caused by a discontinuous wall temperature // Physics of Fluids. 2001. V. 13. P. 2645.
  18. Brull S., Mieussens L. Local discrete velocity grids for deterministic rarefied flow Simulations // J. Comput. Phys. 2014. V. 266. P. 22–46.
  19. Kolobov V., Arslanbekov R. ,Frolova A. Solving kinetic Equations with adaptive mesh in phase space for rarefied gas dynamics and plasma physics // Proc. the 29th Intern. Symp. on RGD. 2014. V. AIP Conf. Proc. 1628. P. 952–961.
  20. Chen S., Xu K., Lee C., Cai Q. A unified gas kinetic scheme with moving mesh and velocity space adaptation // J. Comput. Phys. 2012. V. 231. P. 6643–6664.
  21. Arslanbekov R.,Kolobov V.I., Frolova A.A. Kinetic Solvers with Adaptive Mesh in Phase Space // Physical Review E. 2013. V. 88. P. 063301.
  22. Filbet F., Rey T. A Rescaling Velocity Method for Dissipative Kinetic Equations – Applications to Granular Media // J. Comput. Physics. 2013. V. 248. P. 177–199.
  23. Коган М.Н. Динамика разреженного газа. М.: Наука, 1967.
  24. Bhatnagar P.L„Gross E.P.,Krook M. A model for collision process in gases // Physical Review. 1954. V. 94. P. 511–525.
  25. Chen J., Liu S., Zhang R. Zhuo C, Yang Y., Zhong C. A global adaptive discretization of velocity space for discrete velocity methods in predictions of rarefied and multi-scale flows // Physics of Fluids. 2024. V. 36.№8. P. 086104.
  26. Morozov A.A.,Titarev V.A. Numerical simulation of pulsed planar evaporation into background gas based on direct Monte Carlo simulation and solution of the BGK model kinetic equation // J. of Physics: Conference Series. 2021. V. 2119. P. 012116.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025