Обратные задачи для уравнения Гельмгольца по отысканию правой части с нелокальным интегральным наблюдением

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Приводятся постановки обратных задач для уравнения Гельмгольца по отысканию его правой части с дополнительным интегральным условием типа Самарского–Ионкина и обоснование их корректности в смысле Адамара в классе регулярных решений. Единственность решений поставленных задач доказана на основании интегральных тождеств. Методами разделенных переменных и интегральных уравнений решения задач построены в явном виде. Библ. 19.

Об авторах

К. Б. Сабитов

Институт математики с вычислительным центром УФИЦ РАН; Стерлитамакский филиал Уфимского университета науки и технологии

Автор, ответственный за переписку.
Email: sabitov_fmf@mail.ru
Россия, 450008, Уфа, ул. Чернышевского, 112; Россия, 453103, Стерлитамак, пр-т Ленина, 49

Список литературы

  1. Романов В.Г. Некоторые обратные задачи для уравнений гиперболического типа. Новосибирск: Наука СО, 1972. 164 с.
  2. Лаврентьев М.М., Резницкая К.Г., Яхно В.Г. Одномерные обратные задачи математической физики. Новосибирск: Наука, 1982. 88 с.
  3. Романов В.Г. Обратные задачи математической физики. М.: Наука, 1984. 264 с.
  4. Денисов А.М. Введение в теорию обратных задач. М.: Изд-во МГУ, 1994. 208 с.
  5. Prilepko A.I., Orlovsky D.G., Vasin I.A. Methods for Solving Inverse Problems in Mathematical Physics. New York; Basel: Marcel Dekker Inc, 1999. 709 p.
  6. Isakov V. Inverse problems for partial differential equations. New-York: Springer, 2006. 358 p.
  7. Кабанихин С.И. Обратные и некорректные задачи. Новосибирск: Сиб. науч. изд-во, 2009. 457 с. (изд. 2).
  8. Дмитриев В.И. Обратные задачи геофизики. М.: Макс Пресс, 2012. 340 с.
  9. Ягола А.Г., Янфей Ван, Степанова И.Э., Титаренко В.Н. Обратные задачи и методы их решения. Приложения к геофизике. М.: Бином. Лаборатория знаний, 2014. 216 с.
  10. Ягола А.Г., Кочиков И.В., Курамшина Г.М., Пентин Ю.А. Обратные задачи колебательной спектроскопии. М.: Изд-во “Курс”, 2017. 336 с. (изд. 2).
  11. Кожанов А.И. Нелинейные нагруженные уравнения и обратные задачи // Ж. вычисл. матем. и матем. физ. 2004. Т. 44. № 4. С. 694–716.
  12. Romanov V., Hasanov A. Uniqueness and stability analysis of final data inverse sourse problems for evolution equations // J. Inverse Ill-Posed Probl. 2022. V. 30. № 3. P. 425–446.
  13. Орловский Д.Г. Об одной обратной задаче для дифференциального уравнения второго порядка в банаховом пространстве // Дифференц. ур-ния. 1989. Т. 25. № 6. С. 1000–1009.
  14. Орловский Д.Г. Обратная задача Дирихле для уравнения эллиптического типа // Дифференц. ур-ния. 2008. Т. 44. № 1. С. 119–128.
  15. Соловьев В.В. Обратные задачи определения источника для уравнения Пуассона на плоскости // Ж. вычисл. матем. и матем. физ. 2004. Т. 44. № 5. С. 862–871.
  16. Соловьев В.В. Обратные задачи определения источника и коэффициента в эллиптическом уравнении в прямоугольнике // Ж. вычисл. матем. и матем. физ. 2007. Т. 47. № 8. С. 1365–1377.
  17. Сабитов К.Б. Краевая задача для уравнений параболо-гиперболического типа с нелокальным интегральным условием // Дифференц. ур-ния. 2010. Т. 46. № 10. С. 1468–1478.
  18. Сабитов К.Б., Мартемьянова Н.В. К вопросу о корректности обратных задач для неоднородного уравнения Гельмгольца // Вестник Сам. гос. тех. ун-та. Сер. физ.-мат. науки. 2018. Т. 22. № 2. С. 269–292.
  19. Сабитов К.Б. Функциональные, дифференциальные и интегральные уравнения. М.: Высш. школа, 2005. 671 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© К.Б. Сабитов, 2023