On the Absence of Weak Solutions of Nonlinear Nonnegative Higher Order Parabolic Inequalities with a Nonlocal Source
- Autores: Admasu V.E.1
-
Afiliações:
- RUDN University
- Edição: Volume 63, Nº 6 (2023)
- Páginas: 987-999
- Seção: Partial Differential Equations
- URL: https://vietnamjournal.ru/0044-4669/article/view/664837
- DOI: https://doi.org/10.31857/S0044466923060029
- EDN: https://elibrary.ru/TQSKVV
- ID: 664837
Citar
Resumo
The paper proves the absence of solutions of semilinear parabolic inequalities and higher order systems with a singular potential and nonlocal sources. The proofs are based on the test function method developed by E. Mitidieri and S.I. Pokhozhaev.
Palavras-chave
Sobre autores
V. Admasu
RUDN University
Autor responsável pela correspondência
Email: mihretesme@gmail.com
117198, Moscow, Russia
Bibliografia
- Митидиери Э., Похожаев С.И. Отсутствие положительных решений для квазилинейных эллиптических задач в // Тр. Матем. ин-та им. В.А. Стеклова. 1999. Т. 227. С. 186–216.
- Mitidieri E., Pohozaev S.I. Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on // J. Evolut. Equat. 2001. V. 1. № 2. P. 189–220.
- Kartsatos A.G., Kurta V.V. On the critical Fujita exponents for solutions of quasilinear parabolic inequalities // J. Math. Anal. Appl. 2002. V. 269. № 1. P. 73–86.
- Jiang Z.X., Zheng, S.N. A Liouville-type theorem for a doubly degenerate parabolic inequality // Acta Math. Scientia. 2010. V. 30. № 3. P. 639–643.
- Admasu W.E., Galakhov E.I., Salieva O.A. Nonexistence of nontrivial weak solutions of some nonlinear inequalities with gradient nonlinearity // Contemporary Math. Fundament. Direct. 2021. V. 67. № 1. P. 1–13.
- Галахов Е.И. Об отсутствии локальных решений некоторых эволюционных задач // Матем. заметки. 2009. Т. 86. № 3. С. 337–349.
- Yang C., Zhao L., Zheng S. The critical Fujita exponent for the fast diffusion equation with potential // J. Math. Anal. Appl. 2013. V. 398. № 2. P. 879–885.
- Liu C. The critical Fujita exponent for a diffusion equation with a potential term // Lithuanian Math. J. 2014. V. 54. № 2. P. 182–191.
- Ishige K. On the Fujita exponent for a semilinear heat equation with a potential term // J. Math. Anal. Appl. 2008. V. 344. № 1. P. 231–237.
- Pinsky R. The Fujita exponent for semilinear heat equations with quadratically decaying potential or in an exterior domain // J. Diff. Eq. 2009. V. 246. № 6. P. 2561–2576.
- Chen C.S., Huang J.C. Some nonexistence results for degenerate parabolic inequalities with local and nonlocal nonlinear terms // J. Nanjing Univ. Math. Biq. 2004. V. 21. № 1. P. 12–20.
- Xiao S., Fang Z.B. Nonexistence of solutions for the quasilinear parabolic differential inequalities with singular potential term and nonlocal source // J. Ineq. Appl. 2020. V. 2020. № 1. P. 1–9.
- Галахов Е.И. Об эллиптических и параболических неравенствах высокого порядка с особенностями на границе // Тр. Матем. ин-та им. В.А. Стеклова. 2010. Т. 269. № 1. С. 76–84.
Arquivos suplementares
