BIMETALLIC AgCu COMPOSITES AND THEIR CONJUGATES WITH QUERCETIN: SYNTHESIS AND ELECTRONIC STRUCTURE

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

New hybrid materials based on Ag, Cu, AgCu nanoparticles and their conjugates with quercetin were obtained using an environmentally friendly method of metal-vapor synthesis (MVS). The composition and electronic state of the nanocomposites were studied by XPS, PXRD and SEM/EDX. It was found that modification of metals with flavonoid leads to stabilization of smaller particles in the conjugate compared to metal powders. PXRD analysis showed that the average crystallite size of metals upon introduction of quercetin decreases from 4.1 to 3.6 nm for Ag and from 8.7 to 4.8 nm for Cu. According to XPS data for bimetals and their conjugates, silver is in the ground state Ag0, and the states of Ag+ and acetate silver are present in small amounts. Copper is in the states of Cu0, Cu+, Cu2+. Bimetallic nanoparticles are a solid solution with a disordered structure and Ag–Cu, Ag–O–Cu and Ag–O–Cu–O– bonds.

Авторлар туралы

N. Melekhina

A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: alexandervasilkov@yandex.ru
Moscow, Russia

A. Naumkin

A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: alexandervasilkov@yandex.ru
Moscow, Russia

A. Golub

A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: alexandervasilkov@yandex.ru
Moscow, Russia

P. Voloshina

A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: alexandervasilkov@yandex.ru
Moscow, Russia

A. Vasil'kov

A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: alexandervasilkov@yandex.ru
Moscow, Russia

Әдебиет тізімі

  1. Майстренко М.А., Якушева Е.Н., Титов Д.С. // Антибиотики и химиотерапия. 2023. Т. 68. № 5–6. С. 39. https://doi.org/10.37489/0235-2990-2023-68-5-6-39-48
  2. Кузьмичев А.С., Богатиков А.А., Добренов К.Г. и др. // Российские биомедицинские исследования. 2022. Т. 7. № 3. С. 36. https://doi.org/10.56871/9654.2022.99.32.006
  3. Urban-Chmiel R., Marek A., Stepień-Pyśniak D. et al. // Antibiotics. 2022. V. 11. № 8. P. 1079. https://doi.org/10.3390/antibiotics11081079
  4. Church N.A., McKillip J.L. // Biologia. 2021. V. 76. № 5. P. 1535. https://doi.org/10.1007/s11756-021-00697-x
  5. Мансию G., Midiri A., Gerace E. et al. // Pathogens. 2021. V. 10. № 10. P. 1310. https://doi.org/10.3390/pathogens10101310
  6. Uddin T.M., Chakraborty A.J., Khusro A. et al. // J. Infect. Public Health. 2021. V. 14. № 12. P. 1750. https://doi.org/10.1016/j.jiph.2021.10.020
  7. Мелешко А.А., Афиносенова Ф.Г., Афиносенов Г.Е. и др. // Инфекция и иммунитет. 2020. Т. 10. № 4. С. 639. http://dx.doi.org/10.15789/2220-7619-AIA-1512
  8. Сараева Н.Н., Толордова Э.Р., Хмельницкий Р.А. и др. // Письма в ЖЭТФ. 2025. Т. 121. № 4. С. 321. https://doi.org/10.31857/S0370274X2500245
  9. Ттелумкова А.М., Voloshina P.R., Naumkin A.V. et al. // Mendeleev Commun. 2025. V. 35. № 4. P. 481. https://doi.org/10.71267/mencom.7706
  10. Vasil'kov A.Yu., Batsalova T., Dzambazov B. et al. // Surface and interface analysis. 2022. V. 54. № 3. P. 189. https://doi.org/10.1002/sia.7038
  11. Bastos C.A.P., Faria N., Wills J. et al. // Nano Impact. 2020. V. 17. P. 100192. https://doi.org/10.1016/j.impact.2019.100192
  12. Ershov V.A., Ershov B.G. // Toxics. 2024. V. 12. P. 801. https://doi.org/10.3390/toxics12110801
  13. Fan X., Yahia L.H., Sacher E. // Biology. 2021. V. 10. № 2. P. 137. https://doi.org/10.3390/biology10020137
  14. Yin I.X., Zhang J., Zhao I.S. et al. // Int. J. Nanomedicine. 2020. V. 15. P. 2555. https://doi.org/10/2147/IJN/S246764
  15. Ржеусский C.Э. // Вестник ВГМУ. 2022. Т. 21. № 2. С. 15. https://doi.org/10.22263/2312-4156.2022.2.15
  16. Удегова Е.С., Пыловская К.А., Рукосуева Т.В. и др. // Инфекция и иммунитет. 2021. Т. 11. № 4. С. 771. https://doi.org/10.15789/2220-7619-MNA-1359
  17. Abd-Elsalam K.A., Alghuthaymi M.A., Shami A. et al. // J. Fungi. 2020. V. 6. № 3. P. 112. https://doi.org/10.3390/jof6030112
  18. Васильков А.Ю., Воронова А.А., Наумкин А.В. и др. // Журн. неорган. химии. 2023. Т. 68. С. 812. https://doi.org/10.1134/S0036023623600739
  19. Vasiliev G., Kuba A-L., Vija H. et al. // Scientific Reports. 2023. V. 13. № 1. P. 9202. https://doi.org/10.1038/s41598-023-36460-2
  20. Zhou F., Zhu Y., Yang L. et al. // COLLOID SURFACE A. 2022. V. 632. P. 127831. https://doi.org/10.1016/j.colsurfa.2021.127831
  21. Taner M., Sayar N., YulugI.G. et al. // J. Mater. Chem. 2011. V. 21. № 35. P. 13150. https://doi.org/10.1039/C11M11718A
  22. Теплова В.В., Исакова Е.П., Казан О.И. и др. // ПБМ. 2018. Т. 54. № 3. С. 215. https://doi.org/10.7868/S0555109918030017
  23. Rashid M.I., Fareed M. J., Rashid H. et al. // Plant and Human Health. 2019. V. 2. P. 579. https://doi.org/10.1007/978-3-030-03344-6_24
  24. Zulkefli N., Che Nur Mazadilima Che Zahari, Sayuti N.H. et al. // Int. J. Mol. Sci. 2023. V. 24. № 5. P. 4607. https://doi.org/10.3390/ijms24054607
  25. Любителев А.В., Сивкина А.Л., Власова О.А. и др. // Успехи молекулярной онкологии. 2023. Т. 10. № 2. С. 30. https://doi.org/10.17650/2313-805X-2023-10-2-30-41
  26. Mercez-Sadowska A., Sitarek P., Kucharska E. et al. // Antioxidants. 2021. V. 10. P. 726. https://doi.org/10.3390/antiox10050726
  27. Aslam M.S., Ahmad M.S., Riaz H. et al. // Phytochemicals — Source of Antioxidants and Role in Disease Prevention. 2018. P. 95. http://dx.doi.org/10.5772/intechopen.79179
  28. Школьникова М.Н., Воронова Е.В. // Вестник КрасГАУ. 2022. № 6. С. 194. https://doi.org/10.36718/1819-4036-2022-6-194-203.
  29. Sun Zh.G., Li Zh.Na., Zhang J.M. et al. // Current Topics in Medicinal Chemistry. 2022. V. 22. № 4. P. 305. https://doi.org/10.2174/1568026622666220117111858
  30. Kumar D., Pramod Kumar Sharma // Curr. Nutr. Food Sci. 2023. V. 19. P. 1. https://doi.org/10.2174/1573401319666230428152045
  31. Чиряпкин А.С., Золотых Д.С., Поздняков Д.И. // Juvenis Scientia. 2023. Т. 9. № 2. С. 5. https://doi.org/10.32415/jscientia_2023_9_2_5-20
  32. Sysak S., Czarczynska-Goslinska B., Szyk P. et al. // Nanomaterials (Basel). 2023. V. 13. № 9. P. 1531. https://doi.org/10.3390/nano13091531
  33. Li Y., Xiao D., Li S. et al. // Int. J. Mol. Sci. 2022. V. 23. № 13. P. 7413. https://doi.org/10.3390/ijms23137413
  34. Vasil’kov A., Migulin D., Naumkin A. et al. // Pharmaceutics. 2023. V. 15. № 3. P. 809. https://doi.org/10.3390/pharmaceutics15030809
  35. Beamson G., Briggs D. // J. Chem. Education. 1993. V. 70. № 1. P. 1. https://doi.org/10.1021/cd070pA25.
  36. Bourhis K., Blanc S., Mathe C. et al. // Applied clay science. 2011. V. 53. № 4. P. 598. https://doi.org/10.1016/j.clay.2011.05.009
  37. John F. Moulder, William F. Stickle, Peter E. Sobol et al. Handbook of X-ray Photoelectronic Spectroscopy. Physical Electronics Division, Perkin-Elmer Corporation 1992. 261 p.
  38. Biesinger M.C., Lau L.W.M., Gerson A.R. et al. // Applied surface science. 2010. V. 257. № 3. P. 887. https://doi.org/10.1016/j.apsusc.2010.07.086
  39. Biesinger M.C. // Surf. Interface Anal. 2017. V. 49. P. 1325. https://doi.org/10.1002/sia.6239
  40. Barreca D., Alberto Gasparotto, Eugenio Tondello. // Surface Science Spectra. 2007. V. 14. P. 41. https://doi.org/10.1116/11.20080701
  41. Subramanian P.R., Perepezko J.H. // JPE. 1993. V. 14. № 1. P. 62. https://doi.org/10.1007/BF02652162
  42. Straumal B.B., Pontikis V., Kilmamerov A.R. et al. // Acta Mater. 2017. V. 122. P. 60. https://doi.org/10.1016/j.actamat.2016.09.024
  43. Patterson A.L. // Phys. Rev. 1939. V. 56. P. 978. https://doi.org/10.1103/PhysRev.56.978

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025