SYNTHESIS OF TITANIUM OXIDE COATINGS BY ATOMIC LAYER DEPOSITION ON THE SURFACE OF POLYCRYSTALLINE α-Al2O3 PLATES WITH VARYING MORPHOLOGY

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The effect of differences in the surface roughness (160 and 45 nm) of polycrystalline α-Al2O3 wafers on the composition, structure, and properties of titanium oxide coatings formed on it during chemical assembly by atomic layer deposition by alternating treatment of the substrate with titanium tetrachloride and water vapor a set number of times (up to 600) has been studied. Based on the results of X-ray fluorescence analysis and scanning electron microscopy, it was found that the titanium concentration is higher in samples with a higher initial surface roughness. According to diffuse reflection electron spectroscopy data, the coordination state of titanium in oxide coatings corresponds to aluminotitanate, tetrahedral, and anatase-like structures, the ratio between which depends on both the thickness of the coating and the surface roughness of the substrate. Using atomic force microscopy, it has been shown that an increase in the roughness of the substrate leads to the formation of layers consisting of larger particles. At the same time, as the thickness of the coating increases, its roughness increases and the gas sensitivity to oxygen in the sensors based on it increases.

作者简介

N. Zakharova

St. Petersburg State Technological Institute (Technical University)

Email: zakharova@lti-gti.ru
Saint Petersburg, Russia

V. Kusov

St. Petersburg State Technological Institute (Technical University)

Email: zakharova@lti-gti.ru
Saint Petersburg, Russia

D. Sinilo

St. Petersburg State Technological Institute (Technical University)

Email: zakharova@lti-gti.ru
Saint Petersburg, Russia

A. Malygin

St. Petersburg State Technological Institute (Technical University)

编辑信件的主要联系方式.
Email: zakharova@lti-gti.ru
Saint Petersburg, Russia

参考

  1. Патричева Т.Н. Сенсорика. Современные технологии микро- и наноэлектроники / Красноярск: СФУ, 2013. 264 с. https://doi.org/10.12737/641
  2. Якунина И.В., Попов Н.С. Методы и приборы контроля окружающей среды. Экологический мониторинг: учебное пособие / Тамбов: Изд-во Тамб. гос. техн. ун-та, 2009. 188 с.
  3. Clifford K.Ho, Robinson A., Miller D.R. et al. // Sensors. 2005. V. 5. № 1. P. 4. https://doi.org/10.3390/s5010004
  4. Варпанов А.З., Рубан А.Д., Шкурапник В.Л. Методы и приборы контроля окружающей среды и экологический мониторинг. Горная книга / Москва, 2009. 640 с.
  5. Обинцева Л.А. // Рос. хим. журн. 2008. Т. 52. № 2. C. 113.
  6. Pathania A., Dhanda N., Verma R. et al. // ECS Sensors Plus. 2024. V. 3. № 1. P. 19. https://doi.org/10.1149/2754-2726/ad2152
  7. Yu-Feng Sun, Shao-Bo Liu, Fan-Li Meng et al. // Sensors. 2012. V. 12. № 3. P. 2610. https://doi.org/10.3390/s120302610
  8. Isaac N.A., Pikaar I., Biskos G. // Microchim. Acta. 2022. V. 189. № 5. P. 196. https://doi.org/10.1007/s00604-022-05254-0
  9. Solomon S. Sensors / USA: McGraw-Hill Professional, 2009. 1424 p.
  10. Barsan N., Schweizer-Berberich M., Göpel W. // Fresenius. J. Anal. Chem. 1999. V. 365. № 5. P. 287. https://doi.org/10.1007/s002160051490
  11. Panigrahi P., Chandu B., Puvvada N. // ACS Omega. 2024. V. 9. № 3. P. 3092. https://doi.org/10.1021/acsomega.3c06533
  12. Li J., Zhao H., Wang Y. et al. // Sens. Diagn. 2024. V. 3. P. 336. https://doi.org/10.1039/D3SD00226H
  13. Wang C., Yin L., Zhang L. et al. // Sensors. 2010. V. 10. № 3. P. 2088. https://doi.org/10.3390/s100302088
  14. Bonnaud O.A. // J. Plasma Environ. Sci. Technol. 2020. V. 14. № 1. P. 8. https://doi.org/10.34343/jipest.2020.14.e01002
  15. Atta U.H., Saeed M., Khan S.G. et al. Titanium Dioxide — Advances and Applications / California: Interchopen, 2022. 244 p. https://doi.org/10.5772/interchopen.94670
  16. Молодичкин М.О., Богущ В.А. // Докл. БГУИР. 2015. Т. 94. № 8. C. 109.
  17. Maziarz W., Kusior A., Trenczek-Zajac A. // Beilstein J. Nanotechnol. 2016. V. 7. № 1. P. 1718. https://doi.org/10.3762/bjnano.7.164
  18. Cao S., Sui N., Zhang P. et al. // J. Colloid Interface Sci. 2022. V. 607. № 1. P. 357. https://doi.org/10.1016/j.jcis.2021.08.215
  19. Могильин А.S., Simonenko E.P., Simonenko N.P. et al. // Appl. Surf. Sci. 2019. V. 463. P. 197. https://doi.org/10.1016/japsusc201808208
  20. Захарова Н.В., Аккулева К.Т., Малькин А.А. // Журн. общ. химии. 2021. Т. 90. № 9. C. 1670. https://doi.org/10.1134/S1070363220090133
  21. Nagmani, Pravarthana D., Tyagi A. et al. // Appl. Surf. Sci. 2021. V. 549. P. 149281. https://doi.org/10.1016/j.apsusc.2021.149281
  22. Bharathi J.J., Pappayee N. // J. Chem. Pharm. Sci. 2014. Т. 4. P. 59.
  23. Rzaji J.M., Abass A.M. // J. Chem. Rev. 2020. V. 2. № 2. P. 114. https://doi.org/10.33945/SAMI/JCR.2020.2.4
  24. Pozos H.G., Krishna K.T., Amador M. et al. // J. Mater. Sci. Mater. Electron. 2018. V. 29. P. 15829. https://doi.org/10.1007/s10854-018-9477-2
  25. Шашин Д.Е., Владимиров Д.С. // Вестник РВО. 2023. Т. 2. № 1. C. 1.
  26. Кожевников Е.С., Ульянова Е.С., Шалаева Е.В. и др. // Кинетика и каталия. 2019. Т. 60. № 3. C. 346. https://doi.org/10.1134/S045388119030080
  27. Кузнецова С.А., Халилова О.С., Люпова Е.С. и др. // Вестн. ТГУ. Химия. 2022. № 27. C. 39. https://doi.org/10.17223/24135542/27/3
  28. Rahim M.S., Sahdan M.Z., Lias J. // Appl. Mech. Mater. 2015. V. 773–774. P. 744. https://doi.org/10.4028/www.scientific.net/AMM.773-774.744
  29. Dumilli C.W., Kafizas A., Parkin I.P. // Chem. Vap. Deposition. 2012. V. 18. № 4–6. P. 89. https://doi.org/10.1002/cvdc.201200048
  30. Khuanbay Y., Ibrayev N.K., Afanasjev D.A. et al. // IOP Conf. Ser.: Mater. Sci. Eng. 2015. V. 81. № 8. P. 270. https://doi.org/10.1088/1757-899X/81/1/012044
  31. Сосио Е.А., Мамков А.А., Малькин А.А. // Журн. прикл. химии. 2021. Т. 94. № 8. C. 967. https://doi.org/10.31857/S0044461821080028
  32. George S.M. // Chem. Rev. 2009. V. 110. № 1. P. 111. https://doi.org/10.1021/cr900056b
  33. Atomic Layer Deposition of Nanostructured Materials / Eds. Pinna N., Knez M. Weinheim: Wiley-VCH, 2012. 435 p.
  34. Atomic Layer Deposition (ALD): Fundamentals, Characteristics and Industrial Applications / Ed. Valdez J. NY: Nova Science Publishers, Inc., 2015. 175 p.
  35. Малькин А.А., Мамков А.А., Сосио Е.А. // Журн. неорган. химии. 2024. Т. 69. № 3. C. 294. https://doi.org/10.31857/S0044457X24030046
  36. Лисычкин Г.В. // Вестн. Моск. ун-та. Сер. 2. Хи-мия. 2024. Т. 65. № 5. С. 408. https://doi.org/10.55959/MSU0579-9384-2-2024-65-5-408-412
  37. Лисычкин Г.В., Фадеев А.Ю., Сердан А.А. и др. Хи-мия привитых поверхностных соединений / Под ред. Лисычкина Г.В., Физматлит, Москва, 2003. 567 с.
  38. Marichy C., Pinna N. // Adv. Mater. Interfaces. 2016. V. 3. № 21. P. 1600335. https://doi.org/10.1002/admi.201600335
  39. Markutsa A., Rumyaniseva M., Konstantinova E.A. et al. // Sensors. 2021. V. 21. № 7. P. 2554. https://doi.org/10.3390/s21072554
  40. Rothschild A., Komen Y. // J. Electroceram. 2004. V. 13. № 1–3. P. 697. https://doi.org/10.1007/s10832-004-5178-8
  41. Korotenkov G. // Sens. Actuators, B. 2005. V. 107. № 1. P. 209. https://doi.org/10.1016/j.snb.2004.10.006
  42. Korotenkov G. // Mater. Sci. Eng., R. 2008. V. 61. № 1. P. 1. https://doi.org/10.1016/j.mser.2008.02.001
  43. Gulina L.B., Tolstoy V.P., Solovev A.A. et al. // Prog. Nat. Sci.: Mater. Int. 2020. V. 30. № 3. P. 279. https://doi.org/10.1016/j.pnsc.2020.05.001
  44. Сосио Е.А., Сосио Д.Е. Свидетельство о регистрации программы ЭВМ. № 2022613122 // Бюл. изобр. 2022. № 4. С. 1.
  45. Сосио Е.А., Мамков А.А., Малькин А.А. // Журн. физ. химии. 2009. Т. 83. № 4. С. 746.
  46. Jenkins R. X-Ray Fluorescence Spectrometry, 2nd ed. New York: John Wiley & Sons, Inc., 1999. 232 p. https://doi.org/10.1002/9781118521014

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025