SYNTHESIS OF TITANIUM OXIDE COATINGS BY ATOMIC LAYER DEPOSITION ON THE SURFACE OF POLYCRYSTALLINE α-Al2O3 PLATES WITH VARYING MORPHOLOGY
- 作者: Zakharova N.V1, Kusov V.E1, Sinilo D.A1, Malygin A.A1
-
隶属关系:
- St. Petersburg State Technological Institute (Technical University)
- 期: 卷 70, 编号 10 (2025)
- 页面: 1237-1246
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://vietnamjournal.ru/0044-457X/article/view/697750
- DOI: https://doi.org/10.7868/S3034560X25100023
- ID: 697750
如何引用文章
详细
The effect of differences in the surface roughness (160 and 45 nm) of polycrystalline α-Al2O3 wafers on the composition, structure, and properties of titanium oxide coatings formed on it during chemical assembly by atomic layer deposition by alternating treatment of the substrate with titanium tetrachloride and water vapor a set number of times (up to 600) has been studied. Based on the results of X-ray fluorescence analysis and scanning electron microscopy, it was found that the titanium concentration is higher in samples with a higher initial surface roughness. According to diffuse reflection electron spectroscopy data, the coordination state of titanium in oxide coatings corresponds to aluminotitanate, tetrahedral, and anatase-like structures, the ratio between which depends on both the thickness of the coating and the surface roughness of the substrate. Using atomic force microscopy, it has been shown that an increase in the roughness of the substrate leads to the formation of layers consisting of larger particles. At the same time, as the thickness of the coating increases, its roughness increases and the gas sensitivity to oxygen in the sensors based on it increases.
作者简介
N. Zakharova
St. Petersburg State Technological Institute (Technical University)
Email: zakharova@lti-gti.ru
Saint Petersburg, Russia
V. Kusov
St. Petersburg State Technological Institute (Technical University)
Email: zakharova@lti-gti.ru
Saint Petersburg, Russia
D. Sinilo
St. Petersburg State Technological Institute (Technical University)
Email: zakharova@lti-gti.ru
Saint Petersburg, Russia
A. Malygin
St. Petersburg State Technological Institute (Technical University)
编辑信件的主要联系方式.
Email: zakharova@lti-gti.ru
Saint Petersburg, Russia
参考
- Патричева Т.Н. Сенсорика. Современные технологии микро- и наноэлектроники / Красноярск: СФУ, 2013. 264 с. https://doi.org/10.12737/641
- Якунина И.В., Попов Н.С. Методы и приборы контроля окружающей среды. Экологический мониторинг: учебное пособие / Тамбов: Изд-во Тамб. гос. техн. ун-та, 2009. 188 с.
- Clifford K.Ho, Robinson A., Miller D.R. et al. // Sensors. 2005. V. 5. № 1. P. 4. https://doi.org/10.3390/s5010004
- Варпанов А.З., Рубан А.Д., Шкурапник В.Л. Методы и приборы контроля окружающей среды и экологический мониторинг. Горная книга / Москва, 2009. 640 с.
- Обинцева Л.А. // Рос. хим. журн. 2008. Т. 52. № 2. C. 113.
- Pathania A., Dhanda N., Verma R. et al. // ECS Sensors Plus. 2024. V. 3. № 1. P. 19. https://doi.org/10.1149/2754-2726/ad2152
- Yu-Feng Sun, Shao-Bo Liu, Fan-Li Meng et al. // Sensors. 2012. V. 12. № 3. P. 2610. https://doi.org/10.3390/s120302610
- Isaac N.A., Pikaar I., Biskos G. // Microchim. Acta. 2022. V. 189. № 5. P. 196. https://doi.org/10.1007/s00604-022-05254-0
- Solomon S. Sensors / USA: McGraw-Hill Professional, 2009. 1424 p.
- Barsan N., Schweizer-Berberich M., Göpel W. // Fresenius. J. Anal. Chem. 1999. V. 365. № 5. P. 287. https://doi.org/10.1007/s002160051490
- Panigrahi P., Chandu B., Puvvada N. // ACS Omega. 2024. V. 9. № 3. P. 3092. https://doi.org/10.1021/acsomega.3c06533
- Li J., Zhao H., Wang Y. et al. // Sens. Diagn. 2024. V. 3. P. 336. https://doi.org/10.1039/D3SD00226H
- Wang C., Yin L., Zhang L. et al. // Sensors. 2010. V. 10. № 3. P. 2088. https://doi.org/10.3390/s100302088
- Bonnaud O.A. // J. Plasma Environ. Sci. Technol. 2020. V. 14. № 1. P. 8. https://doi.org/10.34343/jipest.2020.14.e01002
- Atta U.H., Saeed M., Khan S.G. et al. Titanium Dioxide — Advances and Applications / California: Interchopen, 2022. 244 p. https://doi.org/10.5772/interchopen.94670
- Молодичкин М.О., Богущ В.А. // Докл. БГУИР. 2015. Т. 94. № 8. C. 109.
- Maziarz W., Kusior A., Trenczek-Zajac A. // Beilstein J. Nanotechnol. 2016. V. 7. № 1. P. 1718. https://doi.org/10.3762/bjnano.7.164
- Cao S., Sui N., Zhang P. et al. // J. Colloid Interface Sci. 2022. V. 607. № 1. P. 357. https://doi.org/10.1016/j.jcis.2021.08.215
- Могильин А.S., Simonenko E.P., Simonenko N.P. et al. // Appl. Surf. Sci. 2019. V. 463. P. 197. https://doi.org/10.1016/japsusc201808208
- Захарова Н.В., Аккулева К.Т., Малькин А.А. // Журн. общ. химии. 2021. Т. 90. № 9. C. 1670. https://doi.org/10.1134/S1070363220090133
- Nagmani, Pravarthana D., Tyagi A. et al. // Appl. Surf. Sci. 2021. V. 549. P. 149281. https://doi.org/10.1016/j.apsusc.2021.149281
- Bharathi J.J., Pappayee N. // J. Chem. Pharm. Sci. 2014. Т. 4. P. 59.
- Rzaji J.M., Abass A.M. // J. Chem. Rev. 2020. V. 2. № 2. P. 114. https://doi.org/10.33945/SAMI/JCR.2020.2.4
- Pozos H.G., Krishna K.T., Amador M. et al. // J. Mater. Sci. Mater. Electron. 2018. V. 29. P. 15829. https://doi.org/10.1007/s10854-018-9477-2
- Шашин Д.Е., Владимиров Д.С. // Вестник РВО. 2023. Т. 2. № 1. C. 1.
- Кожевников Е.С., Ульянова Е.С., Шалаева Е.В. и др. // Кинетика и каталия. 2019. Т. 60. № 3. C. 346. https://doi.org/10.1134/S045388119030080
- Кузнецова С.А., Халилова О.С., Люпова Е.С. и др. // Вестн. ТГУ. Химия. 2022. № 27. C. 39. https://doi.org/10.17223/24135542/27/3
- Rahim M.S., Sahdan M.Z., Lias J. // Appl. Mech. Mater. 2015. V. 773–774. P. 744. https://doi.org/10.4028/www.scientific.net/AMM.773-774.744
- Dumilli C.W., Kafizas A., Parkin I.P. // Chem. Vap. Deposition. 2012. V. 18. № 4–6. P. 89. https://doi.org/10.1002/cvdc.201200048
- Khuanbay Y., Ibrayev N.K., Afanasjev D.A. et al. // IOP Conf. Ser.: Mater. Sci. Eng. 2015. V. 81. № 8. P. 270. https://doi.org/10.1088/1757-899X/81/1/012044
- Сосио Е.А., Мамков А.А., Малькин А.А. // Журн. прикл. химии. 2021. Т. 94. № 8. C. 967. https://doi.org/10.31857/S0044461821080028
- George S.M. // Chem. Rev. 2009. V. 110. № 1. P. 111. https://doi.org/10.1021/cr900056b
- Atomic Layer Deposition of Nanostructured Materials / Eds. Pinna N., Knez M. Weinheim: Wiley-VCH, 2012. 435 p.
- Atomic Layer Deposition (ALD): Fundamentals, Characteristics and Industrial Applications / Ed. Valdez J. NY: Nova Science Publishers, Inc., 2015. 175 p.
- Малькин А.А., Мамков А.А., Сосио Е.А. // Журн. неорган. химии. 2024. Т. 69. № 3. C. 294. https://doi.org/10.31857/S0044457X24030046
- Лисычкин Г.В. // Вестн. Моск. ун-та. Сер. 2. Хи-мия. 2024. Т. 65. № 5. С. 408. https://doi.org/10.55959/MSU0579-9384-2-2024-65-5-408-412
- Лисычкин Г.В., Фадеев А.Ю., Сердан А.А. и др. Хи-мия привитых поверхностных соединений / Под ред. Лисычкина Г.В., Физматлит, Москва, 2003. 567 с.
- Marichy C., Pinna N. // Adv. Mater. Interfaces. 2016. V. 3. № 21. P. 1600335. https://doi.org/10.1002/admi.201600335
- Markutsa A., Rumyaniseva M., Konstantinova E.A. et al. // Sensors. 2021. V. 21. № 7. P. 2554. https://doi.org/10.3390/s21072554
- Rothschild A., Komen Y. // J. Electroceram. 2004. V. 13. № 1–3. P. 697. https://doi.org/10.1007/s10832-004-5178-8
- Korotenkov G. // Sens. Actuators, B. 2005. V. 107. № 1. P. 209. https://doi.org/10.1016/j.snb.2004.10.006
- Korotenkov G. // Mater. Sci. Eng., R. 2008. V. 61. № 1. P. 1. https://doi.org/10.1016/j.mser.2008.02.001
- Gulina L.B., Tolstoy V.P., Solovev A.A. et al. // Prog. Nat. Sci.: Mater. Int. 2020. V. 30. № 3. P. 279. https://doi.org/10.1016/j.pnsc.2020.05.001
- Сосио Е.А., Сосио Д.Е. Свидетельство о регистрации программы ЭВМ. № 2022613122 // Бюл. изобр. 2022. № 4. С. 1.
- Сосио Е.А., Мамков А.А., Малькин А.А. // Журн. физ. химии. 2009. Т. 83. № 4. С. 746.
- Jenkins R. X-Ray Fluorescence Spectrometry, 2nd ed. New York: John Wiley & Sons, Inc., 1999. 232 p. https://doi.org/10.1002/9781118521014
补充文件
