Protolytic and Complexing Properties of Some Isomeric Aromatic Amino Acids in Aqueous Solution

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The protolytic and complexation properties of some isomeric aromatic amino acids in aqueous solution were studied by a combination of pH-potentiometric and UV-spectrophotometric titration methods at I = 0.1 mol/dm3 (KCl/NaClO4) and t = (25 ± 1)°С. The acid dissociation constants of ammonium (pKa0) and carboxyl groups (pKa1) in the structure of isomeric benzene-carboxylic amino acids were determined: anthranilic acid (L1), meta-aminobenzoic acid (L2) and para-aminobenzoic acid (L3); ammonium groups (pKa1) in the structure of isomeric benzenesulfonic amino acids: orthanilic acid (L4), methanilic acid (L5), sulfanilic acid (L6). It is shown that the basicity of the amino group in the structure of the reagents decreases in the series of isomers: meta-, para-, ortho-isomer. Despite the fact that ortho-isomers are characterized by lower basicity of the amino group, it is shown that their metal complexes have the highest stability. It was found that anthranilic acid exhibits selective properties towards copper(II) ions, and orthanilic acid – towards silver(I) ions. The spectral characteristics of metal complexes of isomeric benzenesulfonic amino acids with transition metal ions: silver(I), copper(II), nickel(II) and cobalt(II) have been determined.

Texto integral

Acesso é fechado

Sobre autores

G. Zharkov

Yeltsin Ural Federal University; Ural Research Institute of Metrology – a branch of the Mendeleev All-Russian Scientific Research Institute of Metrology

Autor responsável pela correspondência
Email: gennady.zharkov@mail.ru
Rússia, 19, Mir St., Ekaterinburg, 620002; 4, Krasnoarmeyskaya St., Ekaterinburg, 620075

N. Yunusov

Yeltsin Ural Federal University

Email: gennady.zharkov@mail.ru
Rússia, 19, Mir St., Ekaterinburg, 620002

Yu. Petrova

Yeltsin Ural Federal University

Email: gennady.zharkov@mail.ru
Rússia, 19, Mir St., Ekaterinburg, 620002

A. Pestov

Yeltsin Ural Federal University; Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: gennady.zharkov@mail.ru
Rússia, 19, Mir St., Ekaterinburg, 620002; 20, Akademicheskaya St., Ekaterinburg, 620990

L. Neudachina

Yeltsin Ural Federal University

Email: gennady.zharkov@mail.ru
Rússia, 19, Mir St., Ekaterinburg, 620002

Bibliografia

  1. Litecká M., Gyepes R., Vargová Z. et al. // J. Coord. Chem. 2017. V. 70. № 10. P. 1698. https://doi.org/10.1080/00958972.2017.1305493
  2. Ali S., Singh V., Jain P. et al. // J. Saudi Chem. Soc. 2019. V. 23. № 1. P. 52. https://doi.org/10.1016/j.jscs.2018.04.005
  3. Desai N.C., Makwana A.H., Senta R.D. // J. Saudi Chem. Soc. 2016. V. 20. № 6. P. 686. https://doi.org/10.1016/j.jscs.2015.01.0043
  4. Kumar K., Murugesan S. // J. Saudi Chem. Soc. 2018. V. 22. № 1. P. 16. https://doi.org/10.1016/j.jscs.2017.05.012
  5. Samsonowicz M., Regulska E., Kalinowska M. // Chem.-Biol. Interact. 2017. V. 273. P. 245. https://doi.org/10.1016/j.cbi.2017.06.016
  6. Gacki M., Kafarska K., Pietrzak A. et al. // J. Saudi Chem. Soc. 2019. V. 23. № 3. P. 346. https://doi.org/10.1016/j.jscs.2018.08.006
  7. Nawaz M., Abbasi M.W., Hisaindee S. et al. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2016. V. 161. P. 39. https://doi.org/10.1016/j.saa.2016.02.022
  8. Nawaz M., Almessiere M.A., Almofty S.A. et al. // J. Photochem. Photobiol. B. 2019. V. 196. P. 111506. https://doi.org/10.1016/j.jphotobiol.2019.05.003
  9. Gupta G.K., Sharma S.K., Ramteke R. // J. Phytopathol. 2012. V. 160. № 4. P. 167. https://doi.org/10.1111/j.1439-0434.2012.01884.x
  10. Неудачина Л.К., Осинцева Е.В., Скорик Ю.А. и др. // Журн. аналит. химии. 2005. Т. 60. № 3. С. 271.
  11. Скорик Ю.А., Неудачина Л.К., Коротовских Е.В. и др. // Завод. лаб. 2001. Т. 67. № 3. С. 15.
  12. Печищева Н.В., Осинцева Е.В., Неудачина Л.К. и др. // Докл. РАН. 2006. Т. 408. № 2. С. 199.
  13. Осинцева Е.В., Неудачина Л.К., Амфитеатрова А.В. и др. // Завод. лаб. 2006. Т. 72. № 9. С. 11.
  14. Nawaz M., Abbasi M.W., Tariq M. et al. // BMC Chem. 2022. V. 16. № 1. P. 21. https://doi.org/10.1186/s13065-022-00817-x
  15. Solov’ev V.P., Tsivadze A.Yu. // Prot. Met. Phys. Chem. Surf. 2015. V. 51. № 1. P. 1. https://doi.org/10.1134/S2070205115010153
  16. Zharkov G.P., Filimonova O.V., Petrova Yu.S. et al. // Russ. Chem. Bull. 2022. V. 71. № 1. P. 152. https://doi.org/10.1007/s11172-022-3389-2
  17. Zharkov G.P., Filimonova O.V., Petrova Yu.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 8. P. 988. https://doi.org/10.1134/S0036023623601058
  18. Zharkov G.P., Bueva E.I., Filimonova O.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 4. P. 466. https://doi.org/10.1134/S0036023623600247
  19. Электронный ресурс / https://chemaxon.com/marvin
  20. Wallace R.M., Katz S.M. // J. Phys. Chem. 1964. V. 68. № 12. P. 3890. https://doi.org/10.1021/j100794a511
  21. Хартли Ф.Р., Бёргес К., Олкок Р.М. Равновесия в растворах. М.: Мир, 1983.
  22. Lu T.-H., Chattopadhyay P., Liao F.-L. et al. // Anal. Sci. 2001. V. 17. № 7. P. 905. https://doi.org/10.2116/analsci.17.905
  23. Бек М., Надьпал И. Исследование комплексообразования новейшими методами. М.: Мир, 1989.
  24. NIST Critically Selected Stability Constants of Metal Complexes, Version 8.0, 2004.
  25. Irving H., Williams R.J.P. // J. Am. Chem. Soc. 1953. P. 3192. https://doi.org/10.1039/jr9530003192
  26. Haynes W.M. // CRC Handbook of Chemistry and Physics, 95th Edition. Hoboken: CRC Press, 2014.
  27. Weast R.C. // CRC Handbook of Chemistry and Physics, 57th Edition. Cleveland: CRC Press, 1976.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Table 1_Fig. 1

Baixar (15KB)
3. Table 1_Fig. 2

Baixar (15KB)
4. Table 1_Fig. 3

Baixar (14KB)
5. Table 1_Fig. 4

Baixar (14KB)
6. Table 1_Fig. 5

Baixar (14KB)
7. Table 1_Fig. 6

Baixar (13KB)
8. Fig. 1. Spectrophotometric titration profiles of the H-L1 system: a - λ = 275 nm; b - λ = 310 nm.

Baixar (106KB)
9. Fig. 2. Schematic of acid dissociation of isomers of benzolcarboxylic (a) and benzolsulfonic amino acids (b).

Baixar (126KB)
10. Fig. 3. Self-absorption spectra of particles in the systems H-L2 (a) and H-L3 (b): 1 - L, 2 - HL, 3 - H2L.

Baixar (186KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025