INVESTIGATION OF DEHYDRATION OF THE HYDRATE OF NEUTRAL SPIN-CROSSOVER COMPLEX Fe(III) BASED ON PYRUVIC ACID THIOSEMICARBAZONE LIGAND BY THE METHOD OF GAMMA-RESONANCE SPECTROSCOPY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents the results of the study of the dehydration of the hydrate of the neutral spin-crossover (S = 5/2 ↔ S = 1/2) complex [FeIII(Hthpy)(thpy)]· H2O (1) based on pyruvic acid thiosemicarbazone ligand (H2thpy) using the temperature-dependent gamma-resonance spectroscopy on ⁵⁷Fe nuclei. It is suggested for the first time that the release of water from the structure of polycrystalline sample 1 in the temperature range of 92–160 °C is associated with the formation of the neutral complex [FeII(Hthpy)2] (3) stabilized in the high-spin state (S = 2). A comparative analysis of the spectral parameters of complex 1 and the anhydrous neutral spin-crossover complex [FeIII(Hthpy)(thpy)] (2) reveals that 2 retains its spectral characteristics when heated in air in a similar temperature range.

About the authors

M. A Blagov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: spitsina@icp.ac.ru
Chernogolovka, Russia

A. S Lobach

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: spitsina@icp.ac.ru
Chernogolovka, Russia

S. V Simonov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Author for correspondence.
Email: spitsina@icp.ac.ru
Chernogolovka, Russia

N. G Spitsyna

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: spitsina@icp.ac.ru
Chernogolovka, Russia

References

  1. Padlhyé S., Kaufmann G.B. // Coord. Chem. Rev. 1985. V. 63. P. 127. https://doi.org/10.1016/0010-8545(85)80022-9
  2. Губаев Я. Н., Холмунинова Д. А. // Universum: химия и биология: электрон. научн. журн. 2021. № 6. Т. 84. С. 11709. https://doi.org/10.32743/UniChem.2021.84.6.11709
  3. Floquet S., Rivière E., Boukkedadden K. et al. // Polyhedron. 2014. V. 80. P. 60. https://doi.org/10.1016/j.poly.2014.01.025
  4. Паршутин В.В., Шолотов Н.С., Чернышева Н.В. и др. // Электронная обработка материалов. 2012. Т. 48. № 6. С. 80.
  5. Spin-Crossover Materials: Properties and Applications / Ed. Halcrow M.A. Chichester. John Wiley & Sons, 2013. P. 564. http://dx.doi.org/10.1002/9781118519301
  6. Милкин В.И., Стариков А.Г. // Изв. АН. Сер. хим. 2015. № 3. С. 475. Minkin VI., Starikov A.G. // Russ. Chem. Bull. 2015. V. 64. № 3. P. 475. https://doi.org/10.1007/s11172-015-0891-9
  7. Смоленцев А.И., Лавренова Л.Г., Елохина В.Н. и др. // Журн. структур. химии. 2009. Т. 50. № 3. С. 522. Smolensky A.I., Lavrenova L.G., Elokhina V.N. et al. // J. Struct. Chem. 2009. V. 50. № 3. P. 500. https://doi.org/10.1007/s10947-009-0076-1
  8. Чумаков Ю.М., Цанков В.Н., Жанко Е. и др. // Журн. структур. химии. 2013. Т. 54. № 3. С. 523. Chumakov Y.M., Tsoplov V.I., Gulea A.P. et al. // J. Struct. Chem. 2013. V. 54. № 3. P. 577. https://doi.org/10.1134/S0022476613030165
  9. Jambol A.A., Hamid M.H.S.A., Mirza A.H. et al. // Int. J. Org. Chem. 2017. V. 7. P. 42. https://doi.org/10.4236/ijoc.2017.71005
  10. Yousef T.A., El-Reash G.M.A., El-Gammal O.A. et al. // J. Indian Chem. Soc. 2024. V. 101. № 10. P. 101296. https://doi.org/10.1016/j.jics.2024.101296
  11. Jewović V., Golubović L., Golubović L. et al. // Int. J. Mol. Sci. 2024. V. 25. № 13. P. 7058. https://doi.org/10.3390/ijms25137058
  12. Dharmasivan M., Zhang S., Zhao X. // J. Med. Chem. 2025. V. 68. № 9. P. 9594. https://doi.org/10.1021/acs.jmedchem.5c00374
  13. Аблов А.В., Горбачу Н.В. // Журн. неорган. химии. 1970. Т. 15. № 7. С. 1854.
  14. Шилинов В.Н., Зеленинов В.В., Жданов В.М. и др. // Письма в ЖЭТФ. 1974. Т. 19. № 9. С. 560.
  15. Timken M.D., Wilson S.R., Hendrickson D.N. // Inorg. Chem. 1985. V. 24. P. 3450. https://doi.org/10.1021/ic002150030
  16. Blagov M.A., Akimov A.V., Lobach A.S. et al. // Dalton Trans. 2025. V. 54. P. 346. https://doi.org/10.1039/D4DT02901A
  17. Семенов В.Г., Москвич Л.Н., Ефимов А.А. // Успехи химии. 2006. Т. 75. № 4. С. 354. https://doi.org/10.1070/RC2006v075n04ABEH003609
  18. Tesfaye D., Gebreggiabher M., Braun J. et al. // R. Soc. Open Sci. 2025. V. 12. № 1. P. 241334. https://doi.org/10.1098/rsos.241334
  19. Grandjean F., Long G. // Chem. Mater. 2021. V. 33. № 11. P. 3878. https://doi.org/10.1021/acs.chemmater.1c00326
  20. Киджаш Е., Homonnay Z., Homonnay Z. et al. // Molecules. 2021. V. 26. № 4. P. 1062. https://doi.org/10.3390/molecules26041062
  21. Bianchi C.L., Djellabi R., Ponti A. et al. // Can. J. Chem. Eng. 2021. V. 99. № 10. P. 2105. https://doi.org/10.1002/cjce.24216
  22. Blagov M.A., Spitsyna N.G., Ovanesyan N.S. et al. // Dalton Trans. 2023. V. 52. P. 1806. https://doi.org/10.1039/D2DT03630D
  23. Klenczár Z., Kuzman E., Véries A. // J. Radioanal. Nucl. Chem. 1996. V. 210. P. 105. https://doi.org/10.1007/BF02055410
  24. Giulich P., Bill E., Trautwein A.X. Mössbauer spectroscopy and transition metal chemistry: fundamentals and applications / Springer Science Business Media, 2010. 569 p. https://doi.org/10.1007/978-3-540-88428-6
  25. Floquet S., Boillot M.-L., Rivière E. et al. // New J. Chem. 2003. V. 27. P. 341. https://doi.org/10.1039/B207516D
  26. Sorai M., Ensling J., Hasselbach K.M. et al. // Chem. Phys. 1977. V. 20. № 2. P. 197. https://doi.org/10.1016/0301-0104(77)85023-4
  27. Dubiel S.M., Gondek L., Žukrowski J. // Inorg. Chim. Acta. 2020. V. 510. P. 119760. https://doi.org/10.1016/j.ica.2020.119760

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences