SYNTHESIS, THERMAL AND ELECTRICAL PROPERTIES OF Bi2NiNb2O9 WITH PYROCHLORE STRUCTURE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Nickel-containing cubic pyrochlore Bi2NiNb2O9 (sp. gr. Fd3m, a = 10.53657(6) Å) was synthesized by the citrate method. At the synthesis temperature of 1050°C, low-porosity ceramics with unclear grain boundary outlines are formed. The disordered structure of pyrochlore (sp. gr. Fd3m, a = 10.53784 Å, Z = 4) was refined by the Rietveld method based on X-ray powder diffraction data. The studied pyrochlore belongs to isotropically expanding oxide compounds with an average value of the thermal expansion coefficient of (6.4 × 10−6)°C−1 in the range of 30–750°C. Above 1110°C, thermal dissociation of Bi2NiNb2O9 occurs with the formation of the impurity phase NiNb2O6. Bi2NiNb2O9 is characterized by a high activation energy of 1.43 eV and a frequency- and temperature-independent permittivity of 144 (up to 300°C), low dielectric losses of ~ 0.002 at 1 MHz. The studied ceramics can be used as a high-frequency dielectric material in the creation of multilayer ceramic capacitors.

作者简介

K. Badanina

Syktyvkar State University

Email: Badanina-Ksenia@mail.ru
Syktyvkar, 167001 Russia

N. Sekushin

Institute of Chemistry of the Komi Science Center UB RAS

Email: Badanina-Ksenia@mail.ru
Syktyvkar, 167982 Russia

M. Krzhizhanovskaya

Saint Petersburg State University

Email: Badanina-Ksenia@mail.ru
St. Petersburg, 199034 Russia

N. Zhuk

Syktyvkar State University

编辑信件的主要联系方式.
Email: Badanina-Ksenia@mail.ru
Syktyvkar, 167001 Russia

参考

  1. Hiroi Z., Yamaura J.-I., Yonezawa S. et al. // Physica C. 2007. V. 460–462. P. 20. https://doi.org/10.1016/j.physc.2007.03.023
  2. Giampaoli G., Siritanon T., Day B. et al. // Prog. Solid State Chem. 2018. V. 50. P. 16. https://doi.org/10.1016/j.progsolidstchem.2018.06.001
  3. Pandey J., Shrivastava V., Nagarajan R. // Inorg. Chem. 2018. V. 57. № 21. P. 13667. https://doi.org/10.1021/acs.inorgchem.8b02258
  4. Yu S., Li L., Zheng H. // Alloys Compd. 2017. V. 699. P. 68. https://doi.org/10.1016/j.jallcom.2016.12.333
  5. Guo Q., Li L., Yu S. et al. // Ceram. Int. 2018. V. 44. № 1. P. 333. https://doi.org/10.1016/j.ceramint.2017.09.177
  6. Vanderah T.A., Siegrist T., Lufaso M.W. et al. // Eur. J. Inorg. Chem. 2006. V. 2006. № 23. P. 4908. https://doi.org/10.1002/ejic.200600661
  7. Miles G.C., West A.R. // J. Am. Ceram. Soc. 2006. V. 89. № 3. P. 1042. https://doi.org/10.1111/j.1551-2916.2005.00799.x
  8. Subramanian M.A., Aravanmadan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V. 15. № 2. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
  9. Zhuk N.A., Kryhizhanovskaya M.G., Koroleva A.V. et al. // Inorg. Chem. 2021. V. 60. № 7. P. 4924. https://doi.org/10.1021/acs.inorgchem.1e00007
  10. Zhuk N.A., Kryhizhanovskaya M.G., Sekushin N.A. et al. // J. Mater. Res. Technol. 2023. V. 22. P. 1791. https://doi.org/10.1016/j.jmrt.2022.12.059
  11. Vanderah T.A., Lufaso M.W., Adler A.U. et al. // J. Solid State Chem. 2006. V. 179. P. 3467. https://doi.org/10.1016/j.jssc.2006.07.014
  12. Zhuk N.A., Badannia K.A., Korolev R.I. et al. // Inorganics. 2023. V. 11. № 7. P. 288. https://doi.org/10.3390/inorganics11070288
  13. Valant M., Suvorov D. // J. Am. Ceram. Soc. 2005. V. 88. № 9. P. 2540. https://doi.org/10.1111/j.1551-2916.2005.00439.x
  14. Hassan A., Mustafa G.M., Abbas S.K. et al. // Ceram. Int. 2019. V. 45. № 12. P. 14576. https://doi.org/10.1016/j.ceramint.2019.04.175
  15. Tan P.Y., Tan K.B., Khaw C.C. et al. // Ceram. Int. 2014. V. 40. № 3. P. 4237. https://doi.org/10.1016/j.ceramint.2013.08.087
  16. Guo Q., Li L., Yu S. et al. // Ceram. Int. 2018. V. 44. № 1. P. 333. https://doi.org/10.1016/j.ceramint.2017.09.177
  17. Dasin N.A.M., Tan K.B., Khaw C.C. et al. // Mater. Chem. Phys. 2019. V. 242. P. 122558. https://doi.org/10.1016/j.matchemphys.2019.122558
  18. Abdullah A., Wan Khalid W.E.F., Abdullah S.Z. // Appl. Mechanics and Materials. 2015. V. 749. P. 30. https://doi.org/10.4028/www.scientific.net/AMM.749.30
  19. Bruker AXS. Topas 5.0. General profile and structure analysis software for powder diffraction data. Karlsruhe, Germany. 2014.
  20. Bubnova R.S., Firsova V.A., Filatov S.K. // Glass Phys. Chem. 2013. V. 39. № 3. P. 347. https://doi.org/10.1134/S108765961303005X
  21. Langreiter T., Kahlenberg V. // Crystals. 2015. V. 5. № 1. P. 143. https://doi.org/10.3390/cryst5010143
  22. Mansie T.J.S., Millington A., Dube P.A. et al. // J. Solid State Chem. 2016. V. 236. P. 19. https://doi.org/10.1016/j.jssc.2015.07.048
  23. Zhuk N.A., Kryhizhanovskaya M.G., Sekushin N.A. et al. // Ceram. Int. 2023. V. 49. № 2. P. 2934. https://doi.org/10.1016/j.ceramint.2022.09.278
  24. Zhuk N.A., Kryhizhanovskaya M.G., Sekushin N.A. et al. // ACS Omega. 2021. V. 6. № 36. P. 23262. https://doi.org/10.1021/acsomega.1c02969
  25. Shannon R.D. // Acta Crystallogr., Sect. A: Found. Crystallogr. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
  26. Koroleva M.S., Pitt I.V., Istomin E.I. // Chim. Techno Acta. 2017. V. 4. № 4. P. 231. https://doi.org/10.15826/chimtech/2017.4.4.04
  27. Nguyen H.B., Norén L., Liu Y. et al. // J. Solid State Chem. 2007. V. 180. № 9. P. 2558. https://doi.org/10.1016/j.jssc.2007.07.003
  28. Zhuk N.A., Kryhizhanovskaya M.G. // Ceram. Int. 2021. V. 47. № 21. P. 30099. https://doi.org/10.1016/j.ceramint.2021.07.187
  29. Alfred A.L., Rochow E.G. // J. Inorg. Nucl. Chem. 1958. V. 5. № 4. P. 264. https://doi.org/10.1016/0022-1902(58)80003-2
  30. Zhuk N.A., Kryhizhanovskaya M.G., Belyy V.A. et al. // Chem. Mater. 2020. V. 32. № 13. P. 5493. https://doi.org/10.1021/acs.chemmater.0c00010
  31. Kurty K.V.G., Rajagopalan S., Mathews C.K. et al. // Mater. Res. Bull. 1994. V. 29. № 7. P. 759. https://doi.org/10.1016/0025-5408(94)90201-1
  32. Shukla R., Vasundhara K., Krishna P.S.R. et al. // Int. J. Hydrogen Energy. 2015. V. 40. № 45. P. 15672. https://doi.org/10.1016/J.IJHYDENE.2015.09.059
  33. Raison P.E., Pavel C.C., Jardin R. et al. // Phys. Chem. Miner. 2010. V. 37. P. 555. https://doi.org/10.1007/s00269-010-0356-5
  34. Feng J., Xiao B., Zhou R. et al. // J. Appl. Phys. 2012. V. 111. P. 103535. https://doi.org/10.1063/1.4722174
  35. Qun-bo F., Feng Z., Fu-chi W. et al. // Comput. Mater. Sci. 2009. V. 46. № 3. P. 716. https://doi.org/10.1016/j.commatsci.2009.02.033
  36. Zhang Y., Zhang Z., Zhu X. et al. // Appl. Phys. A. 2013. V. 115. № 2. P. 661. https://doi.org/10.1007/s00339-013-7843-8
  37. Osman R.A.M., Maos N., West A.R. // J. Am. Ceram. Soc. 2012. V. 95. № 1. P. 296. https://doi.org/10.1111/j.1551-2916.2011.04779.x
  38. Valant M. // J. Am. Ceram. Soc. 2009. V. 92. № 4. P. 955. https://doi.org/10.1111/j.1551-2916.2009.02984.x
  39. Cam D.P., Randall C.A., Shrout T.R. // Solid State Commun. 1996. V. 100. № 7. P. 529. https://doi.org/10.1016/0038-1098(96)00012-9

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025