Low-Temperature Synthesis of Highly Dispersed Calcium Aluminate
- Authors: Kozlova L.O.1, Voroshilov I.L.1, Ioni Y.V.1, Son A.G.1, Popova A.S.1, Kozerozhets I.V.1
 - 
							Affiliations: 
							
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
 
 - Issue: Vol 69, No 8 (2024)
 - Pages: 1109-1116
 - Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
 - URL: https://vietnamjournal.ru/0044-457X/article/view/666358
 - DOI: https://doi.org/10.31857/S0044457X24080035
 - EDN: https://elibrary.ru/XKYDFN
 - ID: 666358
 
Cite item
Abstract
A new approach to prepare highly dispersed calcium aluminate at temperatures from 900°C with desired properties (bulk density starting from 0.015 g/cm3, particle size falling in the range of 7–42 described, which consists of step-by-step heat treatment of a concentrated aqueous solution of Al(NO3)3, Ca(NO3)2, and C6H8O7 in the molar ratio CaO : Al2O3 = 1 : 2. The main stages of the synthesis X-ray powder diffraction, IR spectroscopy, as well as scanning and transmission electron microscopies. dispersed calcium aluminate obtained using the developed approach has pronounced luminescent features.
Keywords
Full Text
About the authors
L. O. Kozlova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
							Author for correspondence.
							Email: kozzllova167@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
I. L. Voroshilov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: kozzllova167@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
Yu. V. Ioni
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: kozzllova167@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
A. G. Son
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: kozzllova167@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
A. S. Popova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: kozzllova167@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
I. V. Kozerozhets
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: kozzllova167@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Zawrah M., Khalil N. // Ceram. Int. 2007. V. 33. P. 1419. https://doi.org/10.1016/j.ceramint.2006.04.022
 - Kozerozhets I.V., Avdeeva V.V., Buzanov G.A. et al. // Inorganics. 2022. V. 10. № 212. P. 212. https://doi.org/10.3390/inorganics10110212
 - Bai J., Liu J., Li C. et al. // Adv. Powder. Technol. 2011. V. 22. P. 72. https://doi.org/10.1016/j.apt.2010.03.013
 - Ying S., Guan Z., Ofoegbu P.C. et al. // Environ. Technol. InnoV. 2022. V. 26. P. 102336. https://doi.org/10.1016/j.eti.2022.102336
 - Pourgolmohammad B., Masoudpanah S.M., Aboutalebi M.R. // Ceram. Int. 2017. V. 43. P. 3797. https://doi.org/10.1016/j.ceramint.2016.12.027
 - Fang L. // Int. J. Electrochem. Sci. 2017. V. 12. P. 218. https://doi.org/10.20964/2017.01.07
 - Mu X., Chen Y., Edward Lester E. et al. // Microporous Mesoporous Mater. 2018. V. 270. P. 249. https://doi.org/10.1016/j.micromeso.2018.05.027
 - Hussain S.K., Yu J.S. // J. Lumin. 2017. V. 183. P. 39. https://doi.org/10.1016/j.jlumin.2016.11.003
 - Singh D., Sheoran S., Tanwar V. // Adv. Mater. Lett. 2017. V. 8. P. 656. https://doi.org/10.5185/amlett.2017.7011
 - Pollmann H. // Rev. Mineral. Geochem. 2012. V. 74. P. 1. https://doi.org/10.2138/rmg.2012.74.1
 - Kozlova L.O., Ioni Yu.V., Son A.G. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1744. https://doi.org/10.1134/S0036023623602374
 - Tian Y., Pan X., Yu H. et al. // J. Alloys Compd. 2016. V. 670. P. 96. https://doi.org/10.1016/j.jallcom.2016.02.059
 - Emmett M. // Dial. Transplant. 2006. V. 35. P. 284. https://doi.org/10.1002/dat.20018
 - Aitasalo T., Durygin A., Hölsä J. et al. // J. Alloys Compd. 2004. V. 380. P. 4. https://doi.org/10.1016/j.jallcom.2004.03.007
 - Gülgün M., Popoola O., Waltraud M. et al. // J. Am. Ceram. Soc. 1997. V. 77. P. 531. https://doi.org/10.1111/j.1151-2916.1994.tb07026.x
 - Yu H., Pan X., Wang B. et al. // Trans. Nonferrous Met. Soc. China. 2012. V. 22. P. 3108. https://doi.org/10.1016/S1003-6326(11)61578-1
 - Zhang D., Pan X., Yu H. et al. // J. Mater. Sci. Technol. 2015. V. 31. P. 1244. https://doi.org/10.1016/j.jmst.2015.10.012
 - Fujii K., Kondo W., Ueno H. et al. // J. Am. Ceram. Soc. 1986. V. 69. P. 361. https://doi.org/10.1111/j.1151-2916.1986.tb04748.x
 - Edmonds R., Majumdar A. // Cem. Concr. Res. 1988. V. 18. P. 311. https://doi.org/10.1016/0008-8846(88)90015-4
 - Chen G. // J. Alloys Compd. 2006. V. 416. P. 279. https://doi.org/10.1016/j.jallcom.2005.08.059
 - Iftekhar S., Grins J., Svensson G. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 747. https://doi.org/10.1016/j.jeurceramsoc.2007.08.012
 - Ridwan I., Asmi D. // AIP Conf. Proc. 2008. V. 989. P. 180. https://doi.org/10.1063/1.2906060
 - Mohamed B., Sharp J. // Thermochim. Acta. 2002. V. 388. P. 105. https://doi.org/10.1016/S0040-6031(02)00035-7
 - Jerebtsov D., Mikhailov G. // Ceram. Int. 2001. V. 27. P. 25. https://doi.org/10.1016/S0272-8842(00)00037-7
 - Kozerozhets I.V., Panasyuk G.P., Semenov E.A. et al. // Powder Technol. 2023. V. 413. P. 118030. https://doi.org/10.1016/j.powtec.2022.118030
 - Escribano P., Marchal M., Sanjuán L. et al. // J. Solid State Chem. 2005. V. 178. P. 1978. https://doi.org/10.1016/j.jssc.2005.04.001
 - Stephan D., Wilhelm P. // Z. Anorg. Allg. Chem. 2004. V. 630. P. 1477. https://doi.org/10.1002/zaac.200400090
 - Kozerozhets I.V., Panasyuk G.P., Semenov E.A. et al. // Ceram. Int. 2022. V. 48. P. 7522. https://doi.org/10.1016/j.ceramint.2021.11.296
 - Ranjbar A., Rezaei M. // Adv. Powder. Technol. 2014. V. 25. P. 467. https://doi.org/10.1016/j.apt.2013.07.011
 - Kingsley J.J., Patil K.C. // Mater. Lett. 1988. V. 6. P. 427. https://doi.org/10.1016/0167-577x(88)90045-6
 - Goswami B., Ranil N., Ahlawat R. // J. Mountain Res. 2021. V. 16. P. 53. https://doi.org/10.51220/jmr.v16i2.8
 - Goswami B., Rani N., Jangra N. et al. // J. Nanopart. Res. 2023. V. 25. P. 72. https://doi.org/10.1007/s11051-023-05718-1
 - Kozerozhets I.V., Semenov E.A., Kozlova L.O. et al. // Mater. Chem. Phys. 2023. V. 309. P. 128387. https://doi.org/10.1016/j.matchemphys.2023.128387
 - Norton A.M., Nguyen H., Xiao N.L. et al. // RSC Adv. 2018. V. 8. P. 17101. https://doi.org/10.1039/c8ra03088j
 
Supplementary files
				
			
					
						
						
						
						
									









