INFLUENCE OF AACVD TEMPERATURE ON THE MICROSTRUCTURAL AND GAS SENSING PROPERTIES OF ZnO THIN FILMS
- 作者: Mokrushin A.S1, Dmitrieva S.A1,2, Simonenko N.P1, Averin A.A3, Gorobtsov P.Y1, Zvyagina A.I3, Simonenko E.P1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- D.I. Mendeleev Russian University of Chemical Technology
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- 期: 卷 70, 编号 10 (2025)
- 页面: 1391-1405
- 栏目: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://vietnamjournal.ru/0044-457X/article/view/697765
- DOI: https://doi.org/10.7868/S3034560X25100172
- ID: 697765
如何引用文章
详细
Thin films of zinc oxide were obtained by the AACVD method. The variable parameter was the synthesis temperature, which was from 350 to 500°C with a step of 25 degrees. The analysis revealed that ZnO particles have a wurtzite structure with an average crystallite size of 26 ± 4 nm. As a result of the analysis of the morphology of the obtained films, it was shown that in the temperature range from 400–450°C, continuous films with an average particle size of 52 ± 14 nm are formed, and at synthesis temperatures of 350–375°C; 475–500°C, films with a discontinuous island-like morphology with an average size of 51 ± 13 nm are formed. The optical properties of the obtained films were studied, and the estimated values of the band gap were 3.31–3.34 eV. A temperature-dependent mechanism of film formation was proposed. The chemosensory properties were studied at an operating temperature of 150–350°C using a wide range of analyte gases: CO, NH3, H2, CH4, C6H6, ethanol, acetone and NO₂. The thin films showed high sensitivity (4–100 ppm) to volatile oxygen-containing organic compounds (acetone and ethanol) at an operating temperature of 350°C. The effect of humidity on the magnitude and shape of the signal obtained during acetone detection was studied.
作者简介
A. Mokrushin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: artyom.nano@gmail.com
Moscow, Russia
S. Dmitrieva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; D.I. Mendeleev Russian University of Chemical Technology
Email: artyom.nano@gmail.com
Moscow, Russia; Moscow, Russia
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: artyom.nano@gmail.com
Moscow, Russia
A. Averin
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: artyom.nano@gmail.com
Moscow, Russia
Ph. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: artyom.nano@gmail.com
Moscow, Russia
A. Zvyagina
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: artyom.nano@gmail.com
Moscow, Russia
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: artyom.nano@gmail.com
Moscow, Russia
参考
- Özgür Ü., Alivov Y.I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. № 4. P. 1. https://doi.org/10.1063/1.1992666
- Xu S., Wang Z.L. // Nano Res. 2011. V. 4. № 11. P. 1013 https://doi.org/10.1007/s12274-011-0160-7
- Mukhanov VA., Sokolov P.S., Baranov A.N. et al. // Cryst. Eng. Comm. 2013. V. 15. № 32. P. 6318. https://doi.org/10.1039/c3ce40766g
- Lin W., Ding K., Lin Z. et al. // Cryst. Eng. Comm. 2011. V. 13. № 10. P. 3338. https://doi.org/10.1039/c1ce05122a
- Tishkevich D.I., Vorobjova A.I., Vinnik D.A. // Solid State Phenom. 2020. V. 299 SSP. P. 100. https://doi.org/10.4028/www.scientific.net/SSP.299.100
- Ohta H., Hosono H. // Mater. Today. 2004. V. 7. № 6. P. 42. https://doi.org/10.1016/S1369-7021(04)00288-3
- O’Brien S., Nolan M.G., Copuroglu M. et al. // Thin Solid Films. 2010. V. 518. № 16. P. 4515. https://doi.org/10.1016/j.tsf.2009.12.020
- Cheng X.L., Zhao H., Huo L.H. et al. // Sens. Actuators, B: Chem. 2004. V. 102. № 2. P. 248. https://doi.org/10.1016/j.spb.2004.04.080
- Arshak K., Gaidan I. // Mater. Sci. Eng., B. 2005. V. 118. № 1–3. P. 44.
- https://doi.org/10.1016/j.mseb.2004.12.061
- Neri G., Bonavita A., Rizzo G. et al. // Sens. Actuators, B: Chem. 2006. V. 114. № 2. P. 687.
- https://doi.org/10.1016/j.spb.2005.06.062
- Мокрушин А.С., Дмитриева С.А., Нагорнова И.А. и др. // Журн. неорган. химии. 2024. Т. 69. № 12. С. 1872.
- https://doi.org/10.31857/S0044457X24120195
- Look D.C., Reynolds D.C., Litton C.W. et al. // Appl. Phys. Lett. 2002. V. 81. № 10. P. 1830.
- https://doi.org/10.1063/1.1504875
- Kolodziejczak-Radzinska A., Jesionowski T. // Materials (Basel). 2014. V. 7. № 4. P. 2833.
- https://doi.org/10.3390/mn7042833
- Benelmekki M., Erbe A. Nanostructured thin films – background, preparation and relation to the technological revolution of the 21st century, 2019
- https://doi.org/10.1016/B978-0-08-102572-7.00001-5
- Edinger S., Bansal N., Bauch M. et al. // J. Mater. Sci. 2017. V. 52. № 14. P. 8591.
- https://doi.org/10.1007/s10853-017-1084-8
- Bedia A., Bedia F.Z., Allierie M. et al. // Energy Procedia. 2015. V. 74. P. 529.
- https://doi.org/10.1016/j.egypro.2015.07.740
- Bao D., Gu H., Kuang A. // Thin Solid Films. 1998. V. 312. № 1–2. P. 37.
- https://doi.org/10.1016/s0040-6090(97)00302-7
- Khan M.I., Bhatti K.A., Qindeeel R. et al. // Results Phys. 2017. V. 7. P. 651.
- https://doi.org/10.1016/j.rinp.2016.12.029
- Ansari A.A., Khan M.A.M., Alhoshan M. et al. // J. Semiconduct. 2012. V. 33. № 4.
- https://doi.org/10.1088/1674-4926/33/4/042002
- Lee C.H., Choi M.S. // Thin Solid Films. 2016. V. 605. P. 157.
- https://doi.org/10.1016/j.tsf.2015.09.050
- Tan S.T., Chen B.J., Sun X.W. et al. // J. Appl. Phys. 2005. V. 98. № 1.
- https://doi.org/10.1063/1.1940137
- Wix G., Viri I., Sagan P. et al. // Nanoscale Res. Lett. 2017. V. 12. № 1. P. 0.
- https://doi.org/10.1186/s11671-017-2033-9
- Aggarwal R., Zhou H., Jin C. et al. // J. Appl. Phys. 2010. V. 107. № 11. P. 3.
- https://doi.org/10.1063/1.3406260
- Socol G., Craciun D., Mihailescu I.N. et al. // Thin Solid Films. 2011. V. 520. № 4. P. 1274.
- https://doi.org/10.1016/j.tsf.2011.04.196
- Liu Y., Lian J. // Appl. Surf. Sci. 2007. V. 253. № 7. P. 3727.
- https://doi.org/10.1016/j.apsusc.2006.08.012
- Wu T.Y., Huang Y.S., Hu S.Y. et al. // Solid State Commun. 2016. V. 237–238. P. 1.
- https://doi.org/10.1016/j.ssc.2016.03.015
- Ohgaki T., Kawamura Y., Kuroda T. et al. // Key Eng. Mater. 2003. V. 248. P. 91.
- https://doi.org/10.4028/www.scientific.net/kem.248.91
- Bhaehu D.S., Sankar G., Parkin I.P. // Chem. Mater. 2012. V. 24. № 24. P. 4704.
- https://doi.org/10.1021/cm302913b
- Jiamprasertkoon A., Powell M.J., Dixon S.C. et al. // J. Mater. Chem. A. 2018. V. 6. № 26. P. 12682.
- https://doi.org/10.1039/c8ta014206
- Chen S., Noor N., Parkin I.P. et al. // J. Mater. Chem. A. 2014. V. 2. № 40. P. 17174.
- https://doi.org/10.1039/c4ta038887
- Мокрушин А.С., Дмитриева С.А., Горбань Ю.М. и др. // Журн. неорган. химии. 2025. Т. 70. № 4. С. 624.
- https://doi.org/10.31857/S0044457X2504047
- Claros M., Seika M., Jimenez Y.P. et al. // Nanomaterials. 2020. V. 10. № 3. P. 1.
- https://doi.org/10.3390/nano10030471
- Powell M.J., Potter D.B., Wilson R.L. et al. // Mater. Des. 2017. V. 129. P. 116.
- https://doi.org/10.1016/j.matdes.2017.05.017
- Vallejos S., Piztrová N., Čechal J. et al. // J. Vis. Exp. 2017. V. 2017. № 127. P. 1.
- https://doi.org/10.3791/56127
- Ma T. // Mater. Sci. Semiconduct. Process. 2021. V. 121. P. 105413.
- https://doi.org/10.1016/j.mssp.2020.105413
- Daraz U., Ansari T.M., Arain S.A. et al. // Main Group Met. Chem. 2022. V. 45. № 1. P. 178.
- https://doi.org/10.1515/mgnc-2022-0017
- Shujah T., Butt A., Ikram M. et al. // Dig. J. Nanometer. Biostructures. 2016. V. 11. № 3. P. 891.
- Noh M.F.M., Soh M.F., Teh C.H. et al. // Sol. Energy. 2017. V. 158. P. 474.
- https://doi.org/10.1016/j.solencr.2017.09.048
- Sánchez-Martín S., Olatzola S.M., Castaño E. et al. // RSC Adv. 2021. V. 11. № 30. P. 18493.
- https://doi.org/10.1039/d1ra03251h
- Selvaraj B., Balaguru Rayappan J.B., Jayanth Babu K. // Mater. Sci. Semicond. Process. 2020. V. 112. P. 105006. https://doi.org/10.1016/j.mssp.2020.105006
- Du H., Yang W., Yi W. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 20. P. 23084. https://doi.org/10.1021/acsami.0603498
- Hijri M., Bahanan F., Aida M.S. et al. // J. Inorg. Organomet. Polym. Mater. 2020. V. 30. № 10. P. 4063. https://doi.org/10.1007/s10904-020-01553-2
- Мокрушин А.С., Горбань Ю.М., Нагорнова И.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1891. https://doi.org/10.31857/s0044457x22601250
- Wang M., Zhu Y., Luo Q. et al. // Appl. Surf. Sci. 2021. V. 566. P. 150750. https://doi.org/10.1016/j.apsusc.2021.150750
- Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // J. Alloys Compd. 2024. V. 1009. P. 176856. https://doi.org/10.1016/j.jallcom.2024.176856
- Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. № 2. P. 142. https://doi.org/10.3390/chemosensors11020142
- Vallejos S., Pizurova N., Grácia I. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 48. P. 33335. https://doi.org/10.1021/acsami.6612992
- Khan A. // J. Pakistan Mater. Soc. 2010. V. 4. № 1. P. 5.
- Krysova H., Mansfeldova V., Tarabkova H. et al. // J. Solid State Electrochem. 2024. V. 28. № 8. P. 2531. https://doi.org/10.1007/s10008-023-05766-6
- Hou X., Choy K.L. // Chem. Vap. Deposition. 2006. V. 12. № 10. P. 583. https://doi.org/10.1002/cvde.200600033
- Choy K.L. // Prog. Mater. Sci. 2003. V. 48. № 2. P. 57. https://doi.org/10.1016/S0079-6425(01)00009-3
- Mokrushin A.S., Simonenko T.L., Simonenko N.P. et al. // J. Alloys Compd. 2021. V. 868. https://doi.org/10.1016/j.jallcom.2021.159090
- Wongrat E., Chanlek N., Chucalarrom C. et al. // Ceram. Int. 2017. V. 43. № May. P. S557. https://doi.org/10.1016/j.ceramint.2017.05.296
- Heiland G., Kohl D. // Physical and Chemical Aspects of Oxidic Semiconductor Gas Sensors, Kodansha Ltd, 1988. https://doi.org/10.1016/b978-0-444-98901-7.50007-5
- Hsu C.L., Chang L.F., Hsueh T.J. // Sens. Actuators, B: Chem. 2017. V. 249. P. 265. https://doi.org/10.1016/j.snb.2017.04.083
补充文件
