SYNTHESIS AND ELECTROCHEMICAL PROPERTIES OF NANOSTRUCTURED ZnCr2O4 MATERIALS BASED ON CARBON FIBER FOR SUPERCAPACITORS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Promising energy storage materials based on ZnCr2O4 spinel, synthesized on carbon fiber matrices, remain insufficiently studied in the context of their application in electrochemical supercapacitors. In the present study, the synthesis of these materials was carried out using direct precipitation methods, sol-gel synthesis, and hydrothermal treatment followed by thermal processing. The main focus was on a comprehensive investigation of the morphology, phase composition, and electrochemical characteristics of the samples. Analysis was conducted using X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Samples obtained by the sol-gel method with high-temperature treatment in an argon atmosphere demonstrated high phase purity of the spinel, a well-developed porous structure, and maximum specific capacitance. Impedance studies revealed low resistance values, indicating efficient charge transfer. The research results confirm the high potential of ZnCr2O4/carbon materials for the development of efficient and durable next-generation supercapacitors.

About the authors

O. O Shichalin

Sakhalin State University; Far Eastern Federal University

Email: oleg_shich@mail.ru
Yuzhno-Sakhalinsk, Russia; Vladivostok, Russia

N. P Ivanov

Sakhalin State University; Far Eastern Federal University

Email: oleg_shich@mail.ru
Yuzhno-Sakhalinsk, Russia; Vladivostok, Russia

P. A Marmaza

Sakhalin State University; Far Eastern Federal University

Email: oleg_shich@mail.ru
Yuzhno-Sakhalinsk, Russia; Vladivostok, Russia

A. I Seroshtan

Sakhalin State University; Far Eastern Federal University

Email: oleg_shich@mail.ru
Yuzhno-Sakhalinsk, Russia; Vladivostok, Russia

Z. E Priimak

Sakhalin State University; Far Eastern Federal University

Email: oleg_shich@mail.ru
Yuzhno-Sakhalinsk, Russia; Vladivostok, Russia

M. S Syrtanov

National Research Tomsk Polytechnic University

Email: oleg_shich@mail.ru
Tomsk, Russia

A. V Pirozhkov

National Research Tomsk Polytechnic University

Email: oleg_shich@mail.ru
Tomsk, Russia

T. L Simonenko

N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: oleg_shich@mail.ru
Moscow, Russia

V. V Provatorova

Far Eastern Federal University

Email: oleg_shich@mail.ru
Vladivostok, Russia

V. B Rinchinova

Far Eastern Federal University

Email: oleg_shich@mail.ru
Vladivostok, Russia

V. V Efremov

Sakhalin State University; Institute of Industrial Ecology Problems of the North

Email: oleg_shich@mail.ru

a separate division of the Federal State Budgetary Institution of Science of the Federal Research Center “Kola Science Center of the Russian Academy of Sciences”

Yuzhno-Sakhalinsk, Russia; Apatity, Russia

I. G Tananaev

Sakhalin State University; Institute of Industrial Ecology Problems of the North

Email: oleg_shich@mail.ru

a separate division of the Federal State Budgetary Institution of Science of the Federal Research Center “Kola Science Center of the Russian Academy of Sciences”

Yuzhno-Sakhalinsk, Russia; Apatity, Russia

E. K Papynov

Far Eastern Federal University

Author for correspondence.
Email: oleg_shich@mail.ru
Vladivostok, Russia

References

  1. Zeshan M., Gassoumi A., Alsath S.A. et al. // Ceram. Int. 2024. V. 50. P. 47585. https://doi.org/10.1016/j.ceramint.2024.09.104
  2. Yargun E., Fei H., Anik U. et al. // Mater. Chem. Phys. 2025. V. 344. P. 131120. https://doi.org/10.1016/j.matchemphys.2025.131120
  3. Sarkar S., Akshaya R., Ghosh S. et al. // Electrochim. Acta. 2020. V. 332. P. 135368. https://doi.org/10.1016/j.electacta.2019.135368
  4. Kumar R., Lee D., Agbulut U. et al. // J. Therm. Anal. Calorim. 2024. V. 149. P. 1895. https://doi.org/10.1007/s10973-023-12831-9
  5. Sriram B., Baby J.N., Hsu Y. et al. // Inorg. Chem. 2021. V. 60. P. 12425. https://doi.org/10.1021/acs.inorgchem.1c01678
  6. Karuppiah C., Thirumalraj B., Alagar S. et al. // Catalysts. 2021. V. 11. P. 76. https://doi.org/10.3390/catal11010076
  7. Sriram B., Baby J.N., Wang S.F. et al. // ACS Appl. Electron. Mater. 2021. V. 3. P. 362. https://doi.org/10.1021/acsaelm.0c00906
  8. Kaleeswarran P., Sriram B., Wanget S.F. et al. // Microchem. J. 2020. V. 163. P. 105886. https://doi.org/10.1016/j.microc.2020.105886
  9. Mykhailoyych V., Caruntu G., Graur A. et al. // Micromachines. 2023. V. 14. P. 1. https://doi.org/10.3390/mi14091759
  10. Siddique M.N., Ali T., Ahmed A. et al. // Nano-Struct. Nano-Objects. 2018. P. 156. https://doi.org/10.1016/j.nanoso.2018.06.001
  11. Shichalin O.O., Ivanov N.P., Seroshtan A.I. et al. // J. Phys. Chem. Solids. 2025. V. 205. P. 112804. https://doi.org/10.1016/j.jpcs.2025.112804
  12. Cherifi K., Rekhila G., Omeiri S. et al. // J. Photochem. Photobiol., A: Chem. 2019. V. 368. P. 290. https://doi.org/10.1016/j.jphotochem.2018.10.003.
  13. Boumaza S., Bouguella A., Bouarab R. et al. // Int. J. Hydrogen Energy. 2009. V. 34. P. 4963. https://doi.org/10.1016/j.ijhydene.2008.11.059.
  14. Abdel-Raoof A.M., Fouad M.M., Rashed N.S. et al. // J. Iran. Chem. Soc. 2023. V. 20. P. 2329. https://doi.org/10.1007/s13738-023-02843-5.
  15. Saleem M., Varshney D. // J. Alloys Compd. 2017. V. 708. P. 397. https://doi.org/10.1016/j.jallcom.2017.03.016
  16. Fei T., Ahmad T., Usman M. et al. // Electrochim. Acta. 2023. V. 476. P. 143673. https://doi.org/10.1016/j.electacta.2023.143673
  17. Garg T., Saleem M., Kaurav N. et al. // Mater. Today Proc. 2023. V. 89. P. 4. https://doi.org/10.1016/j.matpr.2023.05.539
  18. Sahu Y., Agrawal S. // Ceram. Int. 2025. V. 51. P. 14531. https://doi.org/10.1016/j.ceramint.2025.01.290
  19. Marinkovic Z.V., Roméevic N., Stojanovic B. // J. Eur. Ceram. Soc. 2007. V. 27. P. 903. https://doi.org/10.1016/j.jeurceramsoc.2006.04.057
  20. Abbasi A., Hamadamian M., Salavati-Niasari M. et al. // J. Colloid Interface Sci. 2017. V. 500. P. 276. https://doi.org/10.1016/j.jcis.2017.04.003
  21. Naz S., Durrani S.K., Mehmood M. et al. // J. Saudi Chem. Soc. 2016. V. 20. P. 585. https://doi.org/10.1016/j.jscs.2014.12.007
  22. Javed M., Khan A.A., Khan M.N. et al. // Mater. Sci. Eng. B. 2021. V. 269. P. 115168. https://doi.org/10.1016/j.mseb.2021.115168
  23. Gingasu D., Mindru I., Patron L. et al. // J. Phys. Chem. Solids. 2013. V. 74. P. 1295. https://doi.org/10.1016/j.jpcs.2013.04.007
  24. Song M., Pan X., Wang W. et al. // Chem. Eng. J. 2024. V. 504. P. 159088. https://doi.org/10.1016/j.cej.2024.159088
  25. Benright Y., Nasrallah N., Chaabane T. et al. // Opt. Mater. (Amst). 2021. V. 115. P. 111035. https://doi.org/10.1016/j.optmat.2021.111035

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences