Zirconosilicate Sorbent Based on Coal Fly Ash Cenospheres for Cesium Immobilization in a Ceramic Form

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hollow aluminosilicate microspheres (cenospheres) of stabilized composition (glass phase – 95.4 wt. %; (SiO2/Al2O3)glass – 3.1) isolated from fly ashes from coal combustion were used to prepare composite sorbents containing a sorption-active component based on zirconosilicates of framework structure. The synthesis products were characterized by XRD, SEM-EDS and low-temperature nitrogen adsorption methods, and their sorption properties towards Cs+ were studied. Zirconosilicate material demonstrates the high distribution coefficient in the process of Cs+ sorption from aqueous solutions (~103–104 ml/g) and stability of sorption capacity as a result of decationation. The possibility of application of SPS-synthesis technology to create high-density mineral-like ceramics for cesium immobilization based on the zirconosilicate sorbent has been investigated. The results of dilatometry, structure and porosity analyses were obtained for ceramics sintered at different temperatures (800–1000°C).

Full Text

Restricted Access

About the authors

T. A. Vereshchagina

Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Email: shichalin_oo@dvfu.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041

E. A. Kutikhina

Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: shichalin_oo@dvfu.ru
Russian Federation, Krasnoyarsk, 660036

O. V. Buyko

Siberian Federal University

Email: shichalin_oo@dvfu.ru
Russian Federation, Krasnoyarsk, 660041

A. A. Belov

Far Eastern Federal University

Email: shichalin_oo@dvfu.ru
Russian Federation, Russky Island, Vladivostok, 690922

O. O. Shichalin

Far Eastern Federal University; Sakhalin State University

Author for correspondence.
Email: shichalin_oo@dvfu.ru
Russian Federation, Russky Island, Vladivostok, 690922; Yuzhno-Sakhalinsk, 693000

A. G. Anshits

Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: shichalin_oo@dvfu.ru
Russian Federation, Krasnoyarsk, 660036

References

  1. Чуканов Н.В., Пеков И.В., Расцветаева Р.К. // Успехи химии. 2004. Т. 73. № 3. С. 227. https://doi.org/10.1070/RC2004v073n03ABEH000825
  2. Chukanov N.V., Pekov I.V. // Rev. Mineral. Geochem. 2005. V. 57. № 1. P. 105. https://doi.org/10.2138/rmg.2005.57.4
  3. Bortun A.I., Bortun L.N., Clearfield A. // Chem. Mater. 1997. V. 9. № 8. P. 1854. https://doi.org/10.1021/cm9701419
  4. Ilyushin G.D., Blatov V.A. // Acta Crystallogr., Sect. B. 2002. V. 58. № 2. P. 198. https://doi.org/10.1107/S0108768101021619
  5. Грищенко Д.Н., Курявый В.Г., Подгорбунский А.Б. и др. // Журн. неорган. химии. 2023. Т. 68. № 1. С. 17. https://doi.org/10.31857/S0044457X22601043
  6. Hou W., Guo X., Shen X. et al. // Nano Energy. 2018. V. 52. P. 279. https://doi.org/10.1016/j.nanoen.2018.07.036
  7. Mauvy F., Siebert E. // J. Eur. Ceram. Soc. 1999. V. 19. № 6–7. P. 917. https://doi.org/10.1016/S0955-2219(98)00344-6
  8. Стенина И.А., Таранченко Е.О., Ильин А.Б. и др. // Журн. неорган. химии. 2023. Т. 68. № 12. С. 1683. https://doi.org/10.31857/S0044457X23601360
  9. Полуэктов П.П., Суханов Л.П., Матюнин Ю.И. // Рос. хим. журн. 2005. Т. 49. № 4. С. 29.
  10. Marocco A., Liguori B., Dell’Agli G. et al. // J. Eur. Ceram. Soc. 2011. V. 31. № 11. P. 1965. https://doi.org/10.1016/j.jeurceramsoc.2011.04.028
  11. Kanda Y. // Constr. Build. Mater. 2022. V. 349. P. 128726. https://doi.org/10.1016/j.conbuildmat.2022.128726
  12. Arun A., Kumar K., Chowdhury A. // J. Eur. Ceram. Soc. 2023. V. 43. № 5. P. 2069. https://doi.org/10.1016/j.jeurceramsoc.2022.12.003
  13. Fernández-González D., Suárez M., Piñuela-Noval J. et al. // Ceram. Int. 2023. V. 49. № 6. P. 9432. https://doi.org/10.1016/j.ceramint.2022.11.108
  14. Panasenko A.E., Shichalin O.O., Yarusova S.B. et al. // Nucl. Eng. Technol. 2022. V. 54. № 9. P. 3250. https://doi.org/10.1016/j.net.2022.04.005
  15. Shichalin O.O., Papynov E.K., Maiorov V.Y. et al. // Radiochemistry. 2019. V. 61. № 2. P. 185. https://doi.org/10.1134/s1066362219020097
  16. Shichalin O.O., Papynov E.K., Nepomnyushchaya V.A. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 6. P. 3004. https://doi.org/10.1016/j.jeurceramsoc.2022.02.007
  17. Längauer D., Čablík V., Hredzák S. et al. // Materials. 2021. V. 14. № 5. P. 1267. https://doi.org/10.3390/ma14051267
  18. Кутихина Т.А., Мазурова Е.В., Буйко О.В. и др. // Физика и химия стекла. 2023. Т. 49. № 2. С. 191.
  19. Vereshchagina T.A., Kutikhina E.A., Buyko O.V. et al. // Chim. Techno Acta. 2022. V. 9. № 4. P. 20229418. https://doi.org/10.15826/chimtech.2022.9.4.18
  20. Anshits N.N., Mikhailova O.A., Anshits A.G. et al. // Fuel. 2010. V. 88. № 9. P. 1849. https://doi.org/10.1016/j.fuel.2010.03.049
  21. Fomenko E.V., Anshits N.N., Solovyov L.A. et al. // Energy Fuels. 2013. V. 27. № 9. P. 5440. https://doi.org/10.1021/ef400754c
  22. Rietveld H.M. // J. Appl. Crystallogr. 1969. V. 2. № 2. P. 65. https://doi.org/10.1107/S0021889869006558
  23. Solovyov L.A. // J. Appl. Crystallogr. 2004. V. 37. № 5. P. 743. https://doi.org/10.1107/S0021889804015638
  24. Greg S.J., Singh K.S.W. Adsorption, surface area, porosity. London: Academic Press, 1982.
  25. ИСО 9277:2010-09 (E). Определение удельной площади поверхности твердых тел по адсорбции газа с применением метода Брунауэра, Эммета и Теллера (BET-метод). M.: Стандартинформ, 2016.
  26. Harkins W.D., Jura G. // J.Am. Chem. Soc. 1944. V. 66. № 8. P. 1366. https://doi.org/10.1021/ja01236a048
  27. Webb P., Orr C. Analytical methods in fine particle technology. Norcross: Micromeritics Instrument Corporation, 1997.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Heteropolyhedral framework structure of the Na4Zr2(SiO4)3 phase of the NASICON family.

Download (265KB)
3. Fig. 2. SEM images of the narrow fraction of cenospheres.

Download (217KB)
4. Fig. 3. SEM images of zeolitisation (a) and zeolitisation-de-alumination (b) products of initial cenospheres; surface areas of modified cenospheres according to EDS data (c, d).

Download (651KB)
5. Fig. 4. SEM images (a, b) and diffractogram (d) of hydrothermal synthesis products in the system ZrOCl2-NaOH-H2O-(H, Na)X; surface area of product pellets according to EDS data (c).

Download (405KB)
6. Fig. 5. Low-temperature nitrogen adsorption-desorption isotherm for the Zr-Si/NASICON sample (a) and pore width distribution calculated from the adsorption branch (b), in dV/dw-lgw coordinates.

Download (137KB)
7. Fig. 6. Cs+ sorption isotherms for synthesis products based on NASICONA phases (dots - experiment, lines - Langmuir model).

Download (97KB)
8. Fig. 7. Samples of zirconosilicate-based ceramic materials obtained by IPS-synthesis at temperatures from 800 to 1000°C.

Download (52KB)
9. Fig. 8. Dilatometric dependences of ceramics obtained at different temperatures by the EIPS method.

Download (330KB)
10. Fig. 9. SEM images of ceramic samples obtained by EIPS at 800°C (a, b), 900°C (c, d) and 1000°C (e, f); distribution maps of Zr, Si and Cs in ceramics obtained at 800°C (g).

Download (757KB)
11. Fig. 10. Diffractograms of ceramics obtained at different temperatures.

Download (137KB)
12. Fig. 11. Low-temperature nitrogen adsorption-desorption isotherms for samples obtained at different sintering temperatures (a) and pore width distribution calculated from the adsorption branch (b), in dV/dw-lgw coordinates.

Download (189KB)

Copyright (c) 2024 Russian Academy of Sciences