Автоколебания и предельный цикл для осциллятора Релея с кубической возвращающей силой
- Авторы: Кумакшев С.А.1
 - 
							Учреждения: 
							
- Институт проблем механики им. А.Ю. Ишлинского РАН
 
 - Выпуск: Том 87, № 5 (2023)
 - Страницы: 765-772
 - Раздел: Статьи
 - URL: https://vietnamjournal.ru/0032-8235/article/view/675096
 - DOI: https://doi.org/10.31857/S0032823523050090
 - EDN: https://elibrary.ru/QIZOZG
 - ID: 675096
 
Цитировать
Полный текст
Аннотация
Исследована колебательная система с механизмом возбуждения как в осцилляторе Релея, но с нелинейной (кубической) возвращающей силой. С помощью метода ускоренной сходимости и процедуры продолжения по параметру построены предельные циклы и вычислены амплитуды и периоды автоколебаний. Это сделано для широкого диапазона значений коэффициента обратной связи, в котором этот коэффициент не является асимптотически малым или большим. Предложенная итерационная процедура позволяет достичь заданной точности вычислений. Проведен анализ особенностей предельного цикла, вызванных увеличением коэффициента самовозбуждения. Полученные результаты сопоставлены с автоколебаниями классического осциллятора Релея с линейной возвращающей силой.
Ключевые слова
Об авторах
С. А. Кумакшев
Институт проблем механики им. А.Ю. Ишлинского РАН
							Автор, ответственный за переписку.
							Email: kumak@ipmnet.ru
				                					                																			                												                								Россия, Москва						
Список литературы
- Харкевич А.А. Автоколебания. М.: Гостехиздат, 1953. 171 с.
 - Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Физматгиз, 1959. 915 с.
 - Лефшец С. Геометрическая теория дифференциальных уравнений. М.: Изд-во иностр. лит., 1961. 387 с.
 - Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974. 503 с.
 - Блакьер О. Анализ нелинейных систем. М.: Мир, 1969. 400 с.
 - Журавлев В.Ф., Климов Д.М. Прикладные методы в теории колебаний. М.: Наука, 1988. 326 с.
 - Мищенко Е.Ф., Розов Н.Х. Дифференциальные уравнения с малым параметром и релаксационные колебания. М.: Наука, 1975. 247 с.
 - Волосов В.М., Моргунов Б.И. Метод осреднения в теории нелинейных колебательных систем. М.: Изд-во МГУ, 1971. 507 с.
 - Акуленко Л.Д. Асимптотические методы оптимального управления. М.: Наука, 1987. 365 с.
 - Малкин И.Г. Некоторые задачи теории нелинейных колебаний. М.: Гостехиздат, 1956. 491 с.
 - Дородницин А.А. Асимптотическое решение уравнения Ван дер Поля // ПММ. 1947. Т. 11. Вып. 3. С. 313–328.
 - Cartwright M.L. Van der Pol’s equation for relaxation oscillations // Contribut. to Theory Nonlin. Oscill. Ann. Math. Studies. 1952. № 29. P. 3–18.
 - Krogdahl W.S. Numerical solutions of the Van der Pol equation // Z. Angew. Math. Phys. 1960. V. 2. № 1. P. 59–63.
 - Urabe M. Numerical study of periodic solutions of Van der Pol’s equation // Тр. Междунар. симпоз. по нелинейным колебаниям. Киев: Изд-во АН УССР, 1963. Т. 2. С. 367–376.
 - Акуленко Л.Д., Коровина Л.И., Нестеров С.В. Автоколебания существенно нелинейной системы // Изв. РАН. МТТ. 2002. № 3. С. 42–48.
 - Акуленко Л.Д., Кумакшев С.А., Нестеров С.В. Эффективное численно-аналитическое решение изопериметрических вариационных задач механики методом ускоренной сходимости // ПММ. 2002. Т. 66. Вып. 5. С. 723–741.
 - Акуленко Л.Д., Коровина Л.И., Кумакшев С.А., Нестеров С.В. Автоколебания осцилляторов Релея и Ван дер Поля при умеренно больших коэффициентах обратной связи // ПММ. 2004. Т. 68. Вып. 2. С. 273–281.
 
Дополнительные файлы
				
			
						
						
						
					
						
									




