Assessment of clay and humus content in soils using the dielectric method
- Authors: Bobrov P.P.1, Belyaeva T.A.1, Kroshka E.S.1, Rodionova O.V.1
-
Affiliations:
- Omsk State Pedagogical University
- Issue: No 6 (2025)
- Pages: 830-843
- Section: SOIL PHYSICS
- URL: https://vietnamjournal.ru/0032-180X/article/view/683502
- DOI: https://doi.org/10.31857/S0032180X25060063
- EDN: https://elibrary.ru/ATBLXD
- ID: 683502
Cite item
Abstract
The paper presents the results of measuring the content of clay, humus, and complex permittivity of 23 soil samples in the frequency range from 10 kHz to 8–10 GHz at different moisture. The content of clay (particles smaller than 0.01 mm) in the samples varied from 1.7 to 47.5%, the humus content – from 0.7 to 8%. The processes of dielectric relaxation were studied, correlations between the process parameters and the clay content were found. To estimate the clay content, the intensity of the low-frequency relaxation process and the complex permittivity at a frequency of 100 kHz, measured in a state close to complete capillary saturation, were used. The square of the correlation coefficient of the found average values with those measured by the sedimentation method was 0.89, the average deviation was – 14% with a maximum deviation of 50–60% for two soil samples. In order to estimate the humus content, the values of clay and the maximum amount of bound water found by the dielectric method were used. The maximum amount of bound water was determined by modeling the dielectric spectra using the relaxation-refraction model as the average of the values found at different moisture of the soil samples. The square of the correlation coefficient of the found values with those measured by the Walkley–Black acid digestion method was 0.72, the average deviation was 28% with a maximum deviation of 200% for one soil sample. The reasons for the high errors were discussed.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
P. P. Bobrov
Omsk State Pedagogical University
Author for correspondence.
Email: bobrov@omgpu.ru
ORCID iD: 0000-0001-9744-8255
Russian Federation, Omsk, 644099
T. A. Belyaeva
Omsk State Pedagogical University
Email: bobrov@omgpu.ru
Russian Federation, Omsk, 644099
E. S. Kroshka
Omsk State Pedagogical University
Email: bobrov@omgpu.ru
Russian Federation, Omsk, 644099
O. V. Rodionova
Omsk State Pedagogical University
Email: bobrov@omgpu.ru
Russian Federation, Omsk, 644099
References
- Безуглова О.С., Горбов С.Н., Карпушова А.В., Тагивердиев С.С. Сравнительная характеристика методов определения органического углерода в почвах // Фундам. исслед. 2014. № 8. С. 1576–1580.
- Беляева Т.А., Бобров А.П., Бобров П.П., Галеев О.В., Мандрыгина В.Н. Определение параметров моделей диэлектрической проницаемости почв с различной плотностью и различным содержанием гумуса по данным экспериментальных измерений в частотном диапазоне 0.1–20 ГГц // Исследование Земли из космоса. 2003. № 5. 28–34.
- Бобров П.П., Беляева Т.А., Крошка Е.С., Родионова О.В. Диэлектрические свойства частиц речного песка в зависимости от их размеров и наличия глинистых примесей // Известия вузов. Сер. Физика. 2023. № 8. С. 91–100. https://www.elibrary.ru/item.asp?id=54478009
- Бобров П.П., Беляева Т.А., Крошка Е.С., Родионова О.В. Определение влажности образцов почв диэлектрическим методом // Почвоведение. 2019. № 7. С. 859–871. https://doi.org/10.1134/S0032180X19050034
- Бобров П.П., Беляева Т.А., Крошка Е.С., Родионова О.В. Использование моделей диэлектрических смесей для оценки содержания глины в сухих почвах // Техника радиосвязи. 2023. Вып. 4. С 79–90.
- Бобров П.П., Миронов В.Л., Ивченко О.А., Красноухова В.Н. Спектроскопическая модель диэлектрической проницаемости почв, использующая стандартизованные агрофизические показатели // Исследование Земли из космоса. 2008. № 1. С. 15–23.
- Ганжара Н.Ф. Практикум по почвоведению М.: Агроконсалт, 2002. 280 с.
- Гуркова Е.А., Соколов Д.А. Влияние гранулометрического состава на гумусонакопление в почвах сухих степей Тувы // Почвоведение. 2022. № 1. С. 106–118. https://doi.org/10.31857/S0032180X22010063
- Каравайский А.Ю., Лукин Ю.И. Влияние органического вещества и влажности на пересечение спектров диэлектрической проницаемости почв // Журнал радиоэлектроники. 2024. № 4. С. 1684–1719. https://doi.org/10.30898/1684-1719.2024.4.11
- Федотов Г.Н., Шеин Е.В., Путляев В.И, Архангелъская Т.А., Елисеев А.В., Милановский Е.Ю. Физико-химические основы различий седиментометрического и лазерно-дифракционного методов определения гранулометрического состава почв // Почвоведение. 2007. № 3. С. 310–317.
- Чинилин А.В., Виндекер Г.В., Савин И.Ю. Vis-NIR спектроскопия для целей оценки содержания органического углерода почв (метаанализ) // Почвоведение. 2023. № 11. С. 1357–1370. https://doi.org/10.31857/S0032180X23600695
- Шамрикова Е.В., Ванчикова Е.В., Кондратёнок Б.М, Лаптева Е.М., Кострова С.Н. Проблемы и ограничения дихроматометрического метода измерения содержания почвенного органического вещества (обзор) // Почвоведение. 2022. № 7. С. 787–794. https://doi.org/10.31857/S0032180X22070097
- Шеин Е.В., Милановский Е.Ю., Молов А.З. Гранулометрический состав: роль органического вещества в различиях данных седиментометрического и лазернодифрактометрического методов // Доклады по экологическому почвоведению. 2006. № 1. С. 17–30.
- Шеин Е.В. Гранулометрический состав почв: проблемы методов исследования. интерпретации результатов и классификации // Почвоведение. 2009. № 3. С. 309–317.
- Юдина А.В. Лазерная дифрактометрия в почвоведении: методические аспекты и диагностическое значение. Дис. … канд. биол. наук. М., 2018. 251 с.
- Юдина А.В., Фоминa Д.С., Валдес-Коровкинa И.А. и др. Пути создания классификации почв по гранулометрическому составу на основе метода лазерной дифракции // Почвоведение. 2020. № 11. С. 1353–1371. https://doi.org/10.31857/S0032180X20110143
- Юдина А.В., Милановский Е.Ю. Микроагрегатный анализ почв методом лазерной дифракции: особенности пробоподготовки и интерпретации результатов // Бюл. Почв. ин-та им. В.В. Докучаева. 2017. № 89. С. 3–20. https://doi.org/10.19047/0136-1694-2017-89-3-20
- Apesteguia M., Plante A.F., Virto I. Methods Assessment for Organic and Inorganic Carbon Quantification in Calcareous Soils of the Mediterranean Region // Geoderma Reg. 2018. V. 12. P. 39–48. https://doi.org/10.1016/j.geodrs.2017.12.001
- Arcone S. A., Boitnott G. E. Maxwell-Wagner relaxation in common minerals and a desert soil at low water contents // J. Appl. Geophys. 2012. V. 81, P. 97–105. https://doi.org/10.1016/j.jappgeo.2011.09.005
- Bai Z., Xie M., Hu B., Luo D., Wan C., Peng J., Shi Z. Estimation of soil organic carbon using Vis-NIR spectral data and spectral feature bands selection in Southern Xinjiang, China // Sensors (Basel). 2022. V. 22. № 16. P. 6124. https://doi.org/10.3390/s22166124
- Beuselinck L., Govers G., Poesen J., Degraer G., Froyen L. Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method // Catena. 1998. V. 32. № 3–4. P. 193–208. https://doi.org/10.1016/S0341-8162(98)00051-4
- Bobrov P.P., Belyaeva Т.A., Kroshka E.S., Rodionova O.V. The effect of dielectric relaxation processes on the complex dielectric permittivity of soils at frequencies from 10 kHz to 8 GHz – Part I: Experimental // IEEE Trans. Geosci. Remote Sens. 2022. V. 60. P. 2005409. https://doi.org/10.1109/TGRS. 2022.3180727
- Bobrov P.P., Galeyev O.W. Observed effects of soil humus & salt contents on the microwave emissivity of soils // Proc. 2001 IEEE Geoscience and Remote Sensing Symposium. Sydney, NSW, 2001. P. 2085–2087. https://doi.org/10.1109/IGARSS. 2001.977911
- Bobrov P.P., Kroshka E.S., Muzalevskiy K.V. The Effect of Dielectric Relaxation Processes on the Complex Dielectric Permittivity of Soils at Frequencies from 10 kHz to 8 GHz – Part II: Broadband Analysis // IEEE Trans. Geosci. Remote Sens. 2024. T. 62. P. 2000411. https://doi.org/10.1109/TGRS. 2023.3340693
- Bobrov P.P., Mironov V.L., Kondratyeva O.V. Repin A.V. The effect of clay and organic matter content on the dielectric permittivity of soils and grounds at the frequency range from 10 MHz to 1 GHz // Proc. 2010 IEEE Int. Geosci. Remote Sens. Symp. July 25, 2010. Honolulu. 2010. P. 4433–4435. https://doi.org/10.1109/IGARSS. 2010.5652152
- Bobrov P.P., Repin A.V., Rodionova O.V. Wideband Frequency Domain Method of Soil Dielectric Properties Measurements // IEEE Trans. Geosci. Remote Sens. 2015. V. 53. Р. 2366–2372. https://doi.org/10.1109/TGRS. 2014.2359092
- Chang C.-W., Laird D.A., Mausbach M.J., Hurburgh C.R. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties // Soil Sci. Soc. Am. J. 2001. V. 65. P. 480–490. https://doi.org/10.2136/sssaj2001.652480x
- Chen Y., Or D. Effects of Maxwell-Wagner polarization on soil complex dielectric permittivity under variable temperature and electrical conductivity // Water Resources Research. 2006. V. 42. P. W06424. https://doi.org/10.1029/2005WR004590
- Dur J.C., Elsass F., Chaplain V., Tessier D. The relationship between particle-size distribution by laser granulometry and image analysis by transmission electron microscopy in a soil clay fraction // Eur. J. Soil Sci. 2004. V. 55. № 2. P. 265–270. https://doi.org/10.1111/j.1365-2389.2004.00597.x
- Durner W., Iden S. C., von Unold G. The Integral Suspension Pressure Method (ISP) for Precise Particle – Size Analysis by Gravitational Sedimentation // Water Resour. Res. 2017. V. 53. № 1. P. 33-48. https://doi.org/10.1002/2016WR019830
- Eshel G., Levy G.J., Mingelgrin U., Singer M.J. Critical evaluation of the use of laser diffraction for particle-size distribution analysis // Soil Sci. Society Am. J. 2004. V. 68. P. 736–743. https://doi.org/10.2136/sssaj2004.7360
- González-Teruel J.D., Jones S.B., Soto-Valles F., Torres-Sánchez R., Lebron I., Friedman S. P., Robinson D.A. Dielectric spectroscopy and application of mixing models describing dielectric dispersion in clay minerals and clayey soils // Sensors. 2020. V. 20. P. 6678. https://doi.org/10.3390/s20226678
- Güneş H. Particle size distribution analysis – guide to method selection. Published November 29, 2022. Updated March 18, 2024. URL: https://measurlabs.com/blog/particle-size-distribution-analysis-method-selection/
- Karavayskiy A.Y., Lukin Y.I. The Effect of Clay Content on the Spectra of Permetivity of Mineral Soils at Positive Temperatures // 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW). Divnomorskoe, Russian Federation, 26-30 June 2023. https://doi.org/10.1109/RSEMW58451.2023.10201998
- Kaszubkiewicz J., Papuga K., Kawałko D., Woźniczka P. Particle Size Analysis by an Automated Dynamometer Method Integrated with an X-y Sample Changer // Measurement. 2020. V. 157. P. 107680. https://doi.org/10.1016/j.measurement.2020.107680
- Khalil M.N., Hendawy E., benhasher F.F., Shokr M.S., Elshewy M.A., Mohamed E.s. Integration of remote sensing and artificial neural networks for prediction of soil organic carbon in arid zones // Frontiers Environ. Sci. 2024. V. 12. P. 1448601. https://doi.org/10.3389/fenvs.2024.1448601
- Konert M., Vandenberghe J. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction // Sedimentology. 1997. V. 3. Р. 523–535. https://doi.org/10.1046/j.1365-3091.1997.d01-38.x
- Kuang B., Mahmood H. S., Quraishi M. Z., Hoogmoed W. B., Mouazen A. M., van Henten E.J. Chapter four. Sensing soil properties in the laboratory, in situ, and on-line: A review // Adv. Agronomy. 2012. V. 114. P. 155–223. https://doi.org/10.1016/B978-0-12-394275-3.00003-1
- Liu J., Zhao S., Jiang L., Chai L., Wu F. The influence of organic matter on soil dielectric constant at microwave frequencies (0.5-40 GHz) // Proc. IEEE Int. Geosci. Remote Sensing. Symp. Melbourne. Victoria. Australia, 21–26 July 2013. P. 13–16. https://doi.org/10.1109/IGARSS. 2013.6721080
- Liua N., Mitchellb J.K. Effects of structural and compositional factors on soil electromagnetic properties // Geomech. Geoengineer.: Int. J. 2009. V. 4. № 4. P. 271–285. https://doi.org/10.1080/17486020903174295
- Magno M.C., Venti F., Bergamin L., Gaglianone G., Pierfranceschi G., Romano E. A comparison between Laser Granulometer and Sedigraph in grain size analysis of marine sediments // Measurement. 2018. V. 128. P. 231–236. https://doi.org/10.1016/j.measurement.2018.06.055
- Merkus H.G. Particle size measurements. Fundamentals, practice, quality. Springer Particle Technology Series (POTS), 2009. V. 17. 532 p.
- Mironov V.L., Karavayskiy A.Yu. Lukin Yu.I., Molostov I.P. A dielectric model of thawed and frozen Arctic soils considering frequency, temperature, texture and dry density // Int. J. Remote Sens. 2020. V. 41. № 10. P. 3845–3865. https://doi.org/10.1080/01431161.2019.1708506
- Mironov V.L., Kerr Y.H., Kosolapova L.G., Savin I.V., Muzalevskiy K.V. A temperature-dependent dielectric model for thawed and frozen organic soil at 1.4 GHz // IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 2015. V. 8. № 9. P. 4470–4477. https://doi.org/10.1109/JSTARS. 2015.2442295
- Mironov V.L., Kosolapova L.G., Fomin S.V. Physically and Mineralogically Based Spectroscopic Dielectric Model for Moist Soils // IEEE Trans. Geosci. Remote Sens. 2009. V. 47. №. 7. P. 2059–2070. https://doi.org/10.1109/TGRS. 2008.2011631
- O’Neill P.E., Jackson T.J. Observed effects of soil organic matter content on the microwave emissivity of soils // Remote Sens. Environ. 1990. V. 31. P. 175–182. https://doi.org/10.1016/0034-4257(90)90087-3
- Polakowski C., Ryżak M., Sochan A., Beczek M., Mazur R., Bieganowski A. Particle size distribution of various soil materials measured by laser diffraction – the problem of reproducibility // Minerals. 2021. V. 11. № 4. P. 465. https://doi.org/10.3390/ min11050465
- Roper W. R., Robarge W.P., Osmond D. L., Heitman J. L. Comparing four methods of measuring soil organic matter in North Carolina soils // Soil Sci. Soc. Am. J. 2019. V. 83. № 2. P. 466–474. https://doi.org/10.2136/sssaj2018.03.0105
- Ramaswamy V., Rao P.S. Grain size analysis of sediments from the northern Andaman Sea: Comparison of laser diffraction and sieve-pipette techniques // Journal Coastal Research. 2006. V. 22. № 4. P. 1000–1009. https://www.jstor.org/stable/4300357
- Shevnin V., Mousatov A., Ryjov A., Delgado-Rodriquez O. Estimation of clay content in soil based on resistivity modelling and laboratory measurements // Geophys. Prospec. 2007. V. 55. P. 265–275. https://doi.org/10.1111/j.1365-2478.2007.00599.x
- Sochan A., Bieganowski A., Bartmiński P., Ryżak M., Brzezińska M., Dębicki R., Stuczyński T., Polakowski C. Use of the Laser Diffraction Method for Assessment of the Pipette Method // Soil Sci. Soc. Am. J. 2015. V. 79. P. 37–42. https://doi.org/10.2136/sssaj2013.07.0308n
- Stefano C. Di, Ferro V., Mirabile S. Comparison between grain-size analyses using laser diffraction and sedimentation methods // Biosyst. Engineer. 2010. V. 106. № 2. P. 205–215. https://doi.org/10.1016/j.biosystemseng.2010.03.013
- Syvitski J.P.M. Principles, methods, and application of particle size analysis. Cambridge: University Press, 1991. https://doi.org/10.1017/CBO9780511626142
- Szypłowska A., Lewandowski A., Yagihara S., et al. Dielectric models for moisture determination of soils with variable organic matter content // Geoderma. 2021. V. 401. P. 115288. https://doi.org/10.1016/j.geoderma.2021.115288
- Taubner H., Roth B., Tippkötter R. Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis // J. Plant Nutrition Soil Sci. 2009. V. 172. № 2. P. 161–171. https://doi.org/10.1002/jpln.200800085
- Vasilyeva M.A., Gusev Y.A., Shtyrlin V. G., Greenbaum (Gutina) A., Puzenko A., Ishai P.B. Feldman Y. Dielectric relaxation of water in clay minerals // Clays Clay Miner. 2014. V. 62. № 1. P. 62–73. https://doi.org/10.1346/CCMN.2014.0620106
- Wagner N., Bore T., Robinet J.-C., Coelho D., Taillade F., Delepine-Lesoille S. Dielectric relaxation behavior of Callovo-Oxfordian clay rock: A hydraulic-mechanical-electromagnetic coupling approach // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 4729–4744. https://doi.org/10.1002/jgrb.50343
- Zhang R., Chan S., Bindlish R., Lakshmi V. A. Performance Analysis of Soil Dielectric Models over Organic Soils in Alaska for Passive Microwave Remote Sensing of Soil Moisture // Remote Sens. 2023. V. 15. № 6. P. 1658. https://doi.org/10.3390/rs15061658
Supplementary files
