Безметочный оптический биосенсор для изучения кинетики связывания умных наноматериалов с лигандами
- Авторы: Завалко Ф.А.1, Комедчикова Е.Н.1, Колесникова О.А.1, Дроздов А.С.2, Орлов А.В.3, Скирда А.М.3, Беляков Н.А.3, Никитин П.И.3, Никитин М.П.1,2, Шипунова В.О.1
-
Учреждения:
- Институт биофизики будущего, Московский физико-технический институт
- Научно-исследовательский университет “Сириус”
- Институт общей физики им. А.М. Прохорова Российской академии наук
- Выпуск: Том 59, № 4 (2025)
- Страницы: 663-676
- Раздел: СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ БИОПОЛИМЕРОВ И ИХ КОМПЛЕКСОВ
- URL: https://vietnamjournal.ru/0026-8984/article/view/692544
- DOI: https://doi.org/10.31857/S0026898425040123
- ID: 692544
Цитировать
Полный текст



Аннотация
Об авторах
Ф. А. Завалко
Институт биофизики будущего, Московский физико-технический институтДолгопрудный, Московская область, 141700 Россия
Е. Н. Комедчикова
Институт биофизики будущего, Московский физико-технический институтДолгопрудный, Московская область, 141700 Россия
О. А. Колесникова
Институт биофизики будущего, Московский физико-технический институтДолгопрудный, Московская область, 141700 Россия
А. С. Дроздов
Научно-исследовательский университет “Сириус”федеральная территория “Сириус”, Краснодарский край, 354340 Россия
А. В. Орлов
Институт общей физики им. А.М. Прохорова Российской академии наукМосква, 119991 Россия
А. М. Скирда
Институт общей физики им. А.М. Прохорова Российской академии наукМосква, 119991 Россия
Н. А. Беляков
Институт общей физики им. А.М. Прохорова Российской академии наукМосква, 119991 Россия
П. И. Никитин
Институт общей физики им. А.М. Прохорова Российской академии наукМосква, 119991 Россия
М. П. Никитин
Институт биофизики будущего, Московский физико-технический институт; Научно-исследовательский университет “Сириус”Долгопрудный, Московская область, 141700 Россия; федеральная территория “Сириус”, Краснодарский край, 354340 Россия
В. О. Шипунова
Институт биофизики будущего, Московский физико-технический институт
Email: viktoriya.shipunova@phystech.edu
Долгопрудный, Московская область, 141700 Россия
Список литературы
- Tregubov A.A., Nikitin P.I., Nikitin M.P. (2018) Advanced smart nanomaterials with integrated logic-gating and biocomputing: dawn of theranostic nanorobots. Chem. Rev. 118(20), 10294–10348.
- Nikitin M.P., Shipunova V.O., Deyev S.M., Nikitin P.I. (2014) Biocomputing based on particle disassembly. Nat. Nanotechnol. 9(9), 716–722.
- Nikitin M.P. (2023) Non-complementary strand commutation as a fundamental alternative for information processing by DNA and gene regulation. Nat. Chemistry. 15(1), 70–82.
- Komedchikova E.N., Kolesnikova O.A., Syuy A.V., Volkov V.S., Deyev S.M., Nikitin M.P., Shipunova V.O. (2024) Targosomes: anti-HER2 PLGA nanocarriers for bioimaging, chemotherapy and local photothermal treatment of tumors and remote metastases. J. Control. Release. 365, 317‒330.
- Kotelnikova P.A., Shipunova V.O., Deyev S.M. (2023) Targeted PLGA-chitosan nanoparticles for NIR-triggered phototherapy and imaging of HER2-positive tumors. Pharmaceutics. 16(1), 9.
- Loynachan C.N., Soleimany A.P., Dudani J.S., Lin Y., Najer A., Bekdemir A., Chen Q., Bhatia S.N., Stevens M.M. (2019) Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 14(9), 883–890.
- Cherkasov V.R., Mochalova E.N., Babenyshev A.V., Vasilyeva A.V., Nikitin P.I., Nikitin M.P. (2020) Nanoparticle beacons: supersensitive smart materials with on/off-switchable affinity to biomedical targets. ACS Nano. 14(2), 1792–1803.
- Docter D., Westmeier D., Markiewicz M., Stolte S., Knauer S., Stauber R. (2015) The nanoparticle biomolecule corona: lessons learned-challenge accepted? Chem. Soc. Rev. 44(17), 6094–6121.
- Orlov A.V., Nikitin M.P., Bragina V.A., Znoyko S.L., Zaikina M.N., Ksenevich T.I., Gorshkov B.G., Nikitin P.I. (2015) A new real-time method for investigation of affinity properties and binding kinetics of magnetic nanoparticles. J. Magn. Magn. Mater. 380, 231–235.
- Lima A.F., Sousa A.A. (2023) Kinetics and timescales in bio–nano interactions. Physchem. 3(4), 385–410.
- Schasfoort R.B.M. (2017) Handbook of Surface Plasmon Resonance. UK: Royal Society Chemistry. 524 p.
- Tselikov G.I., Danilov A., Shipunova V.O., Deyev S.M., Kabashin A.V., Grigorenko A.N. (2023) Topological darkness: how to design a metamaterial for optical biosensing with ultrahigh sensitivity. ACS Nano. 17(19), 19338–19348.
- Shevchenko K.G., Cherkasov V.R., Tregubov A.A., Nikitin P.I., Nikitin M.P. (2017) Surface plasmon resonance as a tool for investigation of non-covalent nanoparticle interactions in heterogeneous self-assembly & disassembly systems. Biosens. Bioelectron. 88, 3–8.
- Nowack B., Bucheli T.D. (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150(1), 5–22.
- Nikitin P.I., Gorshkov B.G., Valeiko M.V., Rogov S. (2000) Spectral-phase interference method for detecting biochemical reactions on a surface. Quantum Electronics. 30(12), 1099.
- Barbosa S., Agrawal A., Rodríguez-Lorenzo L., Pastoriza-Santos I., Alvarez-Puebla R.A., Kornowski A., Weller H., Liz-Marzán L.M. (2010) Tuning size and sensing properties in colloidal gold nanostars. Langmuir. 26(18), 14943–14950.
- Hurst S.J., Lytton-Jean A.K., Mirkin C.A. (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78(24), 8313–8318.
- Turkevich J., Stevenson P.C., Hillier J. (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55‒75.
- Orlov A., Burenin A., Shipunova V., Lizunova A., Gorshkov B., Nikitin P. (2014) Development of immunoassays using interferometric real-time registration of their kinetics. Acta Naturae. 6(1), 85–95.
- Orlov A.V., Burenin A.G., Massarskaya N.G., Betin A.V., Nikitin M.P., Nikitin P.I. (2017) Highly reproducible and sensitive detection of mycotoxins by label-free biosensors. Sens. Actuators, B. 246, 1080–1084.
- Haiss W., Thanh N.T., Aveyard J., Fernig D.G. (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal. Chem. 79(11), 4215–4221.
- Ben Haddada M., Blanchard J., Casale S., Krafft J.-M., Vallée A., Méthivier C., Boujday S. (2013) Optimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: amine- vs thiol-terminated silane. Gold Bull. 46(4), 335–341.
- Lyu Y., Becerril L.M., Vanzan M., Corni S., Cattelan M., Granozzi G., Frasconi M., Rajak P., Banerjee P., Ciancio R., Mancin F., Scrimin P. (2024) The interaction of amines with gold nanoparticles. Adv. Mater. 36(10), 2211624.
- Rao X., Tatoulian M., Guyon C., Ognier S., Chu C., Abou Hassan A. (2019) A comparison study of functional groups (amine vs. thiol) for immobilizing AuNPs on zeolite surface. Nanomaterials. 9(7), 1034.
- Greben K., Li P., Mayer D., Offenhäusser A., Wördenweber R. (2015) Immobilization and surface functionalization of gold nanoparticles monitored via streaming current/potential measurements. J. Phys. Chem. B. 119(19), 5988–5994.
- Hung S.-Y., Shih Y.-C., Tseng W.-L. (2015) Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity. Anal. Chim. Acta. 857, 64–70.
- Acres R.G., Cheng X., Beranová K., Bercha S., Skála T., Matolín V., Xu Y., Prince K.C., Tsud N. (2018) An experimental and theoretical study of adenine adsorption on Au(111). Phys. Chem. Chem. Phys. 20(7), 4688–4698.
- Orlov A., Pushkarev A., Znoyko S., Novichikhin D., Bragina V., Gorshkov B., Nikitin P. (2020) Multiplex label-free biosensor for detection of autoantibodies in human serum: tool for new kinetics-based diagnostics of autoimmune diseases. Biosens. Bioelectron. 159, 112187.
- Hendriks J., Schasfoort R.B., Huskens J., Saris D.F., Karperien M. (2022) Kinetic characterization of SPR-based biomarker assays enables quality control, calibration free measurements and robust optimization for clinical application. Anal. Biochem. 658, 114918.
- Zhitnyuk Y.V., Koval A.P., Alferov A.A., Shtykova Y.A., Mamedov I.Z., Kushlinskii N.E., Chudakov D.M., Shcherbo D.S. (2022) Deep cfDNA fragment end profiling enables cancer detection. Mol. Cancer. 21(1), 26.
- Chen E., Cario C.L., Leong L., Lopez K., Márquez C.P., Chu C., Li P.S., Oropeza E., Tenggara I., Cowan J. (2021) Cell-free DNA concentration and fragment size as a biomarker for prostate cancer. Sci. Rep. 11(1), 5040.
- Heitzer E., Ulz P., Geigl J.B. (2015) Circulating tumor DNA as a liquid biopsy for cancer. Clin. Chem. 61(1), 112–123.
- Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosova-Agadjanyan E.L., Peterson A., Noteboom J., O’Briant K.C., Allen A. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA. 105(30), 10513–10518.
- Kumarswamy R., Bauters C., Volkmann I., Maury F., Fetisch J., Holzmann A., Lemesle G., de Groote P., Pinet F., Thum T. (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ. Res. 114(10), 1569–1575.
- Duque-Afonso J., Waterhouse M., Pfeifer D., Follo M., Duyster J., Bertz H., Finke J. (2018) Cell-free DNA characteristics and chimerism analysis in patients after allogeneic cell transplantation. Clin. Biochem. 52, 137–141.
- Palomaki G.E., Kloza E.M., Lambert-Messerlian G.M., Haddow J.E., Neveux L.M., Ehrich M., van den Boom D., Bombard A.T., Deciu C., Grody W.W. (2011) DNA sequencing of maternal plasma to detect down syndrome: an international clinical validation study. Genet. Med. 13(11), 913–920.
- Dave V.P., Ngo T.A., Pernestig A.-K., Tilevik D., Kant K., Nguyen T., Wolff A., Bang D.D. (2019) MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics. Lab. Invest. 99(4), 452–469.
- Kai K., Dittmar R.L., Sen S. (2018) Secretory microRNAs as biomarkers of cancer. Semin. Cell Dev. Biol. 78, 22–36.
- Laborde H.M., Lima A.M.N., Loureiro F.C.C.L., Thirstrup C., Neff H. (2013) Adsorption, kinetics and biochemical interaction of biotin at the gold-water interface. Thin Solid Films. 540, 221–226.
- Böhm-Hofstätter H., Tschernutter M., Kunert R. (2010) Comparison of hybridization methods and real-time PCR: their value in animal cell line characterization. Appl. Microbiol. Biotechnol. 87, 419–425.
- Wang L., Cheng Y., Wang H., Li Z. (2012) A homogeneous fluorescence sensing platform with water-soluble carbon nanoparticles for detection of microRNA and nuclease activity. Analyst. 137(16), 3667–3672.
- Taton T.A., Mirkin C.A., Letsinger R.L. (2000) Scanometric DNA array detection with nanoparticle probes. Science. 289(5485), 1757–1760.
- Alhasan A.H., Kim D.Y., Daniel W.L., Watson E., Meeks J.J., Thaxton C.S., Mirkin C.A. (2012) Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid–gold nanoparticle conjugates. Anal. Chem. 84(9), 4153–4160.
- Androvic P., Valihrach L., Elling J., Sjoback R., Kubista M. (2017) Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res. 45(15), e144.
- Chen C., Ridzon D.A., Broomer A.J., Zhou Z., Lee D.H., Nguyen J.T., Barbisin M., Xu N.L., Mahuvakar V.R., Andersen M.R. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33(20), e179.
- Mao S., Ying Y., Wu R., Chen A.K. (2020) Recent advances in the molecular beacon technology for live-cell single-molecule imaging. iScience. 23(12), 101801.
- Baker M.B., Bao G., Searles C.D. (2012) In vitro quantification of specific microRNA using molecular beacons. Nucleic Acids Res. 40(2), e13.
- He C., Wang M., Sun X., Zhu Y., Zhou X., Xiao S., Zhang Q., Liu F., Yu Y., Liang H., Zou G. (2019) Integrating PDA microtube waveguide system with heterogeneous CHA amplification strategy towards superior sensitive detection of miRNA. Biosens. Bioelectron. 129, 50–57.
- Zanchetta G., Carzaniga T., Vanjur L., Casiraghi L., Tagliabue G., Morasso C., Bellini T., Buscaglia M. (2021) Design of a rapid, multiplex, one-pot miRNA assay optimized by label-free analysis. Biosens. Bioelectron. 172, 112751.
- Liyanage T., Alharbi B., Quan L., Esquela-Kerscher A., Slaughter G. (2022) Plasmonic-based biosensor for the early diagnosis of prostate cancer. ACS Omega. 7(2), 2411–2418.
- Canady T.D., Li N., Smith L.D., Lu Y., Kohli M., Smith A.M., Cunningham B.T. (2019) Digital-resolution detection of microRNA with single-base selectivity by photonic resonator absorption microscopy. Proc. Natl. Acad. Sci. USA. 116(39), 19362–19367.
- Lee T., Kwon S., Choi H.-J., Lim H., Lee J. (2021) Highly sensitive and reliable microRNA detection with a recyclable microfluidic device and an easily assembled SERS substrate. ACS Omega. 6(30), 19656–19664.
- Zopf D., Pittner A., Dathe A., Grosse N., Csáki A., Arstila K., Toppari J.J., Schott W., Dontsov D., Uhlrich G., Fritzsche W., Stranik O. (2019) Plasmonic nanosensor array for multiplexed DNA-based pathogen detection. ACS Sensors. 4(2), 335–343.
- Yan L.X., Huang X.F., Shao Q., Huang M.Y., Deng L., Wu Q.L., Zeng Y.X., Shao J.Y. (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14(11), 2348‒2360.
- Schmoldt A., Benthe H.F., Haberland G. (1975) Digitoxin metabolism by rat liver microsomes. Biochem. Pharmacol. 24(17), 1639–1641.
- Zhao C., Dong J., Jiang T., Shi Z., Yu B., Zhu Y., Chen D., Xu J., Huo R., Dai J., Xia Y., Pan S., Hu Z., Sha J. (2011) Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus. PloS One. 6(8), e23925.
Дополнительные файлы
