Parkinson’s disease associated with mutations in the LRRK2 gene. Approaches to therapy
- Авторлар: Usenko T.S.1,2, Pchelina S.N.1,2
-
Мекемелер:
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of NRC “Kurchatov Institute”
- First Pavlov State Medical University of St. Petersburg
- Шығарылым: Том 59, № 3 (2025)
- Беттер: 366-383
- Бөлім: ОБЗОРЫ
- URL: https://vietnamjournal.ru/0026-8984/article/view/689562
- DOI: https://doi.org/10.31857/S0026898425030024
- EDN: https://elibrary.ru/PTTJJZ
- ID: 689562
Дәйексөз келтіру
Аннотация
Leucine-rich repeat kinase 2 (LRRK2) belongs to the subfamily of tyrosine kinase–like kinases, the main function of which is to catalyze the transfer of γ-phosphate from ATP to the substrate in the cell due to the kinase domains. The exact functions of LRRK2 in the cell remain unknown. It has been shown that mutations in the LRRK2 gene, which are the cause of the development of the most common autosomal dominant form of neurodegenerative disease, Parkinson’s disease (PD), mainly lead to a pathological increase in kinase activity. This review describes the structure of LRRK2, the functional activity of LRRK2 kinase in the form of a monomer, dimer and even a tetramer, and describes the effect of mutations in the LRRK2 gene on the structure and kinase activity of the LRRK2 enzyme. Understanding the structure and functions of LRRK2 opens up new prospects for using it as a target for PD therapy.
Негізгі сөздер
Толық мәтін

Авторлар туралы
T. Usenko
Petersburg Nuclear Physics Institute named by B. P. Konstantinov of NRC “Kurchatov Institute”; First Pavlov State Medical University of St. Petersburg
Хат алмасуға жауапты Автор.
Email: usenko_ts@pnpi.nrcki.ru
Ресей, Gatchina, 188300; St. Petersburg, 197022
S. Pchelina
Petersburg Nuclear Physics Institute named by B. P. Konstantinov of NRC “Kurchatov Institute”; First Pavlov State Medical University of St. Petersburg
Email: usenko_ts@pnpi.nrcki.ru
Ресей, Gatchina, 188300; St. Petersburg, 197022
Әдебиет тізімі
- Jankovic J., Tan E.K. (2020) Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry. 91(8), 795–808. https://doi.org/10.1136/jnnp-2019-322338
- Ray Dorsey E., Elbaz A., Nichols E., Abd-Allah F., Abdelalim A., Adsuar J.C., Ansha M.G., Brayne C., Choi J.Y.J., Collado-Mateo D., Dahodwala N., Do H.P., Edessa D., Endres M., Fereshtehnejad S.M., Foreman K.J., Gankpe F.G., Gupta R., Hankey G.J., Hay S.I., Hegazy M.I., Hibstu D.T., Kasaeian A., Khader Y., Khalil I., Khang Y.H., Kim Y.J., Kokubo Y., Logroscino G., Massano J., Ibrahim N.M., Mohammed M.A., Mohammadi A., Moradi-Lakeh M., Naghavi M., Nguyen B.T., Nirayo Y.L., Ogbo F.A., Owolabi M.O., Pereira M., Postma M.J., Qorbani M., Rahman M.A., Roba K.T., Safari H., Safiri S., Satpathy M., Sawhney M., Shafieesabet A., Shiferaw M.S., Smith M., Szoeke C.E.I., Tabarés-Seisdedos R., Truong N.T., Ukwaja K.N., Venketasubramanian N., Villafaina S., Weldegwergs K.G., Westerman R., Wijeratne T., Winkler A.S., Xuan B.T., Yonemoto N., Feigin V.L., Vos T., Murray C.J.L. (2018) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17(11), 939–953. https://doi.org/10.1016/S1474-4422(18)30295-3
- Giguère N., Nanni S.B., Trudeau L.E. (2018) On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front. Neurol. 9, 455. https://doi.org/10.3389/fneur.2018.00455
- Wegrzynowicz M., Bar-On D., Calo’ L., Anichtchik O., Iovino M., Xia J., Ryazanov S., Leonov A., Giese A., Dalley J.W., Griesinger C., Ashery U., Spillantini M.G. (2019) Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson’s disease model. Acta Neuropathol. 138, 575–595. https://doi.org/10.1007/s00401-019-02023-x
- Furukawa K., Shima A., Kambe D., Nishida A., Wada I., Sakamaki H., Yoshimura K., Terada Y., Sakato Y., Mitsuhashi M., Sawamura M., Nakanishi E., Taruno Y., Yamakado H., Fushimi Y., Okada T., Nakamoto Y., Takahashi R., Sawamoto N. (2022) Motor progression and nigrostriatal neurodegeneration in Parkinson disease. Ann. Neurol. 92. https://doi.org/10.1002/ana.26373
- Sagredo G.T., Tanglay O., Shahdadpuri S., Fu Y., Halliday G.M. (2024) α-Synuclein levels in Parkinson’s disease – cell types and forms that contribute to pathogenesis. Exp. Neurol. 379, 114887. https://doi.org/10.1016/j.expneurol.2024.114887
- Karimi-Moghadam A., Charsouei S., Bell B., Jabalameli M.R. (2018) Parkinson disease from mendelian forms to genetic susceptibility: new molecular insights into the neurodegeneration process. Cell. Mol. Neurobiol. 38(6), 1153–1178. https://doi.org/10.1007/s10571-018-0587-4
- Xiong Y., Dawson T.M., Dawson V.L. (2017) Models of LRRK2-associated Parkinson’s disease. Advances Neurobiol. 14, 163–191. https://doi.org/10.1007/978-3-319-49969-7_9
- Li D., Mastaglia F.L., Fletcher S., Wilton S.D. (2020) Progress in the molecular pathogenesis and nucleic acid therapeutics for Parkinson’s disease in the precision medicine era. Med. Res. Rev. 40(6), 2650–2681. https://doi.org/10.1002/med.21718
- Emelyanov A.K., Usenko T.S., Tesson C., Senkevich K.A., Nikolaev M.A., Miliukhina I.V., Kopytova A.E., Timofeeva A.A., Yakimovsky A.F., Lesage S., Brice A., Pchelina S.N. (2018) Mutation analysis of Parkinson’s disease genes in a Russian data set. Neurobiol. Aging. 71, 267.e7–267.e10. https://doi.org/10.1016/j.neurobiolaging.2018.06.027
- Zhang X., Kortholt A. (2023) LRRK2 structure-based activation mechanism and pathogenesis. Biomolecules. 13(4), 612. https://doi.org/10.3390/biom13040612
- Kumari U., Tan E.K. (2009) LRRK2 in Parkinson’s disease: genetic and clinical studies from patients. FEBS J. 276(22), 6455–6463. https://doi.org/10.1111/j.1742-4658.2009.07344.x
- Zimprich A., Biskup S., Leitner P., Lichtner P., Farrer M., Lincoln S., Kachergus J., Hulihan M., Uitti R.J., Calne D.B., Stoessl A.J., Pfeiffer R.F., Patenge N., Carbajal I.C., Vieregge P., Asmus F., Müller-Myhsok B., Dickson DW., Meitinger T., Strom T.M., Wszolek Z.K., Gasser T. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 44(4), 601–607. https://doi.org/10.1016/j.neuron.2004.11.005
- Paisán-Ruíz C., Jain S., Evans E.W., Gilks W.P., Simón J., Van Der Brug M., De Munain A.L., Aparicio S., Gil A.M., Khan N., Johnson J., Martinez J.R., Nicholl D., Carrera I.M., Peňa A.S., De Silva R., Lees A., Martí-Massó J.F., Pérez-Tur J., Wood N.W., Singleton A.B. (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 44(4), 595–600. https://doi.org/10.1016/j.neuron.2004.10.023
- Funayama M., Hasegawa K., Kowa H., Saito M., Tsuji S., Obata F. (2002) A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2–q13.1. Ann. Neurol. 51(3), 296–301. https://doi.org/10.1002/ana.10113
- Healy D.G., Falchi M., O’Sullivan S.S., Bonifati V., Durr A., Bressman S., Brice A., Aasly J., Zabetian C.P., Goldwurm S., Ferreira J.J., Tolosa E., Kay D.M., Klein C., Williams D.R., Marras C., Lang A.E., Wszolek Z.K., Berciano J., Schapira A.H., Lynch T., Bhatia K.P., Gasser T., Lees A.J., Wood N.W. (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol. 7(7), 583–590.
- West A.B., Moore D.J., Biskup S., Bugayenko A., Smith W.W., Ross C.A., Dawson V.L., Dawson T.M. (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. USA. 102(46), 16842–16847. https://doi.org/10.1073/pnas.0507360102
- Jaleel M., Nichols R.J., Deak M., Campbell D.G., Gillardon F., Knebel A., Alessi D.R. (2007) LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem. J. 405(2), 307–317. https://doi.org/10.1042/BJ20070209
- Monfrini E., Di Fonzo A. (2017) Leucine-rich repeat kinase (LRRK2) genetics and Parkinson’s disease. Adv. Neurobiol. 14, 3–30. https://doi.org/10.1007/978-3-319-49969-7_1
- Schulte C., Gasser T. (2011) Genetic basis of Parkinson’s disease: inheritance, penetrance, and expression. Appl. Clin. Genetics. 4, 67‒80. https://doi.org/10.2147/TACG.S11639
- Steger M., Tonelli F., Ito G., Davies P., Trost M., Vetter M., Wachter S., Lorentzen E., Duddy G., Wilson S., Baptista M.A., Fiske B.K., Fell M.J., Morrow J.A., Reith A.D., Alessi D.R., Mann M. (2016) Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. Elife. 5, e12813. https://doi.org/10.7554/elife.12813
- Nguyen A.P.T., Moore D.J. (2017) Understanding the GTPase activity of LRRK2: Regulation, function, and neurotoxicity. In: Advances in Neurobiology. Springer, pp. 71–88. https://doi.org/10.1007/978-3-319-49969-7_4
- Kluss J.H., Mamais A., Cookson M.R. (2019) LRRK2 links genetic and sporadic Parkinson’s disease. Biochem. Soc. Trans. 47(2), 651–661. https://doi.org/10.1042/BST20180462
- Di Maio R., Hoffman E.K., Rocha E.M., Keeney M.T., Sanders L.H., De Miranda B.R., Zharikov A., Van Laar A., Stepan A.F., Lanz T.A., Kofler J.K., Burton E.A., Alessi D.R., Hastings T.G., Greenamyre T.J. (2018) LRRK2 activation in idiopathic Parkinson’s disease. Sci. Transl. Med. 10(451), eaar5429. https://doi.org/10.1126/scitranslmed.aar5429
- Ross O.A., Toft M., Whittle A.J., Johnson J.L., Papapetropoulos S., Mash D.C., Litvan I., Gordon M.F., Wszolek Z.K., Farrer M.J., Dickson D.W. (2006) Lrrk2 and Lewy body disease. Ann. Neurol. 59(2), 388‒393. https://doi.org/10.1002/ana.20731
- Soliman A., Cankara F.N., Kortholt A. (2020) Allosteric inhibition of LRRK2, where are we now. Biochem. Soc. Trans. 48(5), 2185–2194. https://doi.org/10.1042/BST20200424
- Covy J.P., Giasson B.I. (2009) Identification of compounds that inhibit the kinase activity of leucine-rich repeat kinase 2. Biochem. Biophys. Res. Commun. 378(3), 473–477. https://doi.org/10.1016/j.bbrc.2008.11.048
- West A.B., Moore D.J., Choi C., Andrabi S.A., Li X., Dikeman D., Biskup S., Zhang Z., Lim K.L., Dawson V.L., Dawson T.M. (2007) Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum. Mol. Genet. 16(2), 223–232. https://doi.org/10.1093/hmg/ddl471
- Kalogeropulou A.F., Purlyte E., Tonelli F., Lange S.M., Wightman M., Prescott A.R., Padmanabhan S., Sammler E., Alessi D.R. (2022) Impact of 100 LRRK2 variants linked to Parkinson’s disease on kinase activity and microtubule binding. Biochem. J. 479(17), 1759–1783. https://doi.org/10.1042/BCJ20220161
- Daniẽls V., Vancraenenbroeck R., Law B.M.H., Greggio E., Lobbestael E., Gao F., De Maeyer M., Cookson M.R., Harvey K., Baekelandt V., Taymans J.M. (2011) Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant. J. Neurochem. 116(2), 304–315. https://doi.org/10.1111/j.1471-4159.2010.07105.x
- Gloeckner C.J., Kinkl N., Schumacher A., Braun R.J., O’Neill E., Meitinger T., Kolch W., Prokisch H., Ueffing M. (2006) The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum. Mol. Genet. 15(2), 223–232. https://doi.org/10.1093/hmg/ddi439
- Puschmann A., Englund E., Ross O.A., Vilariño-Güell C., Lincoln S.J., Kachergus J.M., Cobb S.A., Törnqvist A.L., Rehncrona S., Widner H., Wszolek Z.K., Farrer M.J., Nilsson C. (2012) First neuropathological description of a patient with Parkinson’s disease and LRRK2 p.N1437H mutation. Parkinsonism Relat. Disord. 18(4), 332–338. https://doi.org/10.1016/j.parkreldis.2011.11.019
- Aasly J.O., Vilariño-Güell C., Dachsel J.C., Webber P.J., West A.B., Haugarvoll K., Johansen K.K., Toft M., Nutt J.G., Payami H., Kachergus J.M., Lincoln S.J., Felic A., Wider C., Soto-Ortolaza A.I., Cobb S.A., White L.R., Ross O.A., Farrer M.J. (2010) Novel pathogenic LRRK2 p.Asn1437His substitution in familial Parkinson’s disease. Mov. Disord. 25(13), 2156–2163. https://doi.org/10.1002/mds.23265
- Tan E.K., Tan L.C., Lim H.Q., Li R., Tang M., Yih Y., Pavanni R., Prakash K.M., Fook-Chong S., Zhao Y. (2008) LRRK2 R1628P increases risk of Parkinson’s disease: replication evidence. Hum. Genet. 124(3), 287–288. https://doi.org/10.1007/s00439-008-0544-2
- Shu Y., Ming J., Zhang P., Wang Q., Jiao F., Tian B. (2016) Parkinson-related LRRK2 mutation R1628P enables Cdk5 phosphorylation of LRRK2 and upregulates its kinase activity. PLoS One. 11(3), e0149739. https://doi.org/10.1371/journal.pone.0149739
- Tezuka T., Taniguchi D., Sano M., Shimada T., Oji Y., Tsunemi T., Ikeda A., Li Y., Yoshino H., Ogata J., Shiba-Fukushima K., Funayama M., Nishioka K., Imai Y., Hattori N. (2022) Pathophysiological evaluation of the LRRK2 G2385R risk variant for Parkinson’s disease. NPJ Parkinsons Dis. 8, 97. https://doi.org/10.1038/s41531-022-00367-y
- Rudenko I.N., Kaganovich A., Hauser D.N., Beylina A., Chia R., Ding J., Maric D., Jaffe H., Cookson M.R. (2012) The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson’s disease is a partial loss-of-function mutation. Biochem. J. 446(1), 99–111. https://doi.org/10.1042/BJ20120637
- Mills R.D., Liang L.Y., Lio D.S.S., Mok Y.F., Mulhern T.D., Cao G., Griffin M., Kenche V.B., Culvenor J.G., Cheng H.C. (2018) The Roc-COR tandem domain of leucine-rich repeat kinase 2 forms dimers and exhibits conventional Ras-like GTPase properties. J. Neurochem. 147(3), 409–428. https://doi.org/10.1111/jnc.14566
- Mills R.D., Mulhern T.D., Cheng H.C., Culvenor J.G. (2012) Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson’s disease mutations. Biochem. Soc. Trans. 40(5), 1086–1089. https://doi.org/10.1042/BST20120088
- Deng J., Lewis P.A., Greggio E., Sluch E., Beilina A., Cookson M.R. (2008) Structure of the ROC domain from the Parkinson’s disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc. Natl. Acad. Sci. USA. 105(5), 1499–1504. https://doi.org/10.1073/pnas.0709098105
- Terheyden S., Ho F.Y., Gilsba B.K., Wittinghofer A., Kortholt A. (2015) Revisiting the Roco G-protein cycle. Biochem. J. 465(1), 139–147. https://doi.org/10.1042/BJ20141095
- Gilsbach B.K., Ho F.Y., Vetter I.R., Van Haastert P.J.M., Wittinghofer A., Kortholt A. (2012) Roco kinase structures give insights into the mechanism of Parkinson disease-related leucine-rich-repeat kinase 2 mutations. Proc. Natl. Acad. Sci. USA. 109(26), 10322–10327. https://doi.org/10.1073/pnas.1203223109
- Gotthardt K., Weyand M., Kortholt A., Van Haastert P.J.M., Wittinghofer A. (2008) Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. EMBO J. 27(16), 2239–2249. https://doi.org/10.1038/emboj.2008.150
- Sejwal K., Chami M., Rémigy H., Vancraenenbroeck R., Sibran W., Sütterlin R., Baumgartner P., McLeod R., Chartier-Harlin M.C., Baekelandt V., Stahlberg H., Taymans J.M. (2017) Cryo-EM analysis of homodimeric full-length LRRK2 and LRRK1 protein complexes. Sci. Rep. 7, 8667. https://doi.org/10.1038/s41598-017-09126-z
- Guaitoli G., Raimondi F., Gilsbach B.K., Gómez-Llorente Y., Deyaert E., Renzi F., Li X., Schaffner A., Jagtap P.K.A., Boldt K., Von Zweydorf F., Gotthardt K., Lorimer D.D., Yue Z., Burgin A., Janjic N., Sattler M., Versées W., Ueffing M., Ubarretxena-Belandia I., Kortholt A., Gloeckner C.J. (2016) Structural model of the dimeric Parkinson’s protein LRRK2 reveals a compact architecture involving distant interdomain contacts. Proc. Natl. Acad. Sci. USA. 113(30), E4357‒4366. https://doi.org/10.1073/pnas.1523708113
- Myasnikov A., Zhu H., Hixson P., Xie B., Yu K., Pitre A., Peng J., Sun J. (2021) Structural analysis of the full-length human LRRK2. Cell. 184(13), 3519‒3527.e10. https://doi.org/10.1016/j.cell.2021.05.004
- Deniston C.K., Salogiannis J., Mathea S., Snead D.M., Lahiri I., Matyszewski M., Donosa O., Watanabe R., Böhning J., Shiau A.K., Knapp S., Villa E., Reck-Peterson S.L., Leschziner A.E. (2020) Structure of LRRK2 in Parkinson’s disease and model for microtubule interaction. Nature. 588(7837), 344–349. https://doi.org/10.1038/s41586-020-2673-2
- Snead D.M., Matyszewski M., Dickey A.M., Lin Y.X., Leschziner A.E., Reck-Peterson S.L. (2022) Structural basis for Parkinson’s disease-linked LRRK2’s binding to microtubules. Nat. Struct. Mol. Biol. 29(12), 1196–1207. https://doi.org/10.1038/s41594-022-00863-y
- Watanabe R., Buschauer R., Böhning J., Audagnotto M., Lasker K., Lu T.W., Boassa D., Taylor S., Villa E. (2020) The in situ structure of Parkinson’s disease-linked LRRK2. Cell. 182(6), 1508–1518.e16. https://doi.org/10.1016/j.cell.2020.08.004
- Kett L.R., Boassa D., Ho C.C.Y., Rideout H.J., Hu J., Terada M., Ellisman M., Dauer W.T. (2012) LRRK2 Parkinson disease mutations enhance its microtubule association. Hum. Mol. Genet. 21(4), 890–899. https://doi.org/10.1093/hmg/ddr526
- Schmidt S.H., Weng J.H., Aoto P.C., Boassa D., Mathea S., Silletti S., Hu J., Wallbott M., Komives E.A., Knapp S., Herberg F.W., Taylor S.S. (2021) Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Proc. Natl. Acad. Sci. USA. 118(23), e2100844118. https://doi.org/10.1073/PNAS.2100844118
- Webber P.J., Smith A.D., Sen S., Renfrow M.B., Mobley J.A., West A.B. (2011) Autophosphorylation in the leucine-rich repeat kinase 2 (LRRK2) GTPase domain modifies kinase and GTP-binding activities. J. Mol. Biol. 412(1), 94–110. https://doi.org/10.1016/j.jmb.2011.07.033
- Liu Z., Mobley J.A., DeLucas L.J., Kahn R.A., West A.B. (2016) LRRK2 autophosphorylation enhances its GTPase activity. FASEB J. 30(1), 336–347. https://doi.org/10.1096/fj.15-277095
- Zhu H., Tonelli F., Turk M., Prescott A., Alessi D.R., Sun J. (2023) Rab29-dependent asymmetrical activation of leucine-rich repeat kinase 2. Science. 382(6677), 1404–1411. https://doi.org/10.1126/science.adi9926
- Manschwetus J.T., Wallbott M., Fachinger A., Obergruber C., Pautz S., Bertinetti D., Schmidt S.H., Herberg F.W. (2020) Binding of the human 14–3–3 isoforms to distinct sites in the leucine-rich repeat kinase 2. Front. Neurosci. 14, 32. https://doi.org/10.3389/fnins.2020.00302
- Manzoni C., Mamais A., Dihanich S., Abeti R., Soutar M.P.M., Plun-Favreau H., Giunti P., Tooze S.A., Bandopadhyay R., Lewis P.A. (2013) Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim. Biophys. Acta Mol. Cell Res. 1833(12), 2900–2910. https://doi.org/10.1016/j.bbamcr.2013.07.020
- Fonseca-Ornelas L., Stricker J.M.S., Soriano-Cruz S., Weykopf B., Dettmer U., Muratore C.R., Scherzer C.R., Selkoe D.J. (2022) Parkinson-causing mutations in LRRK2 impair the physiological tetramerization of endogenous α-synuclein in human neurons. NPJ Parkinsons Dis. 8(1), 118. https://doi.org/10.1038/s41531-022-00380-1
- Vides E.G., Adhikari A., Chiang C.Y., Lis P., Purlyte E., Limouse C., Shumate J.L., Spínola-Lasso E., Dhekne H.S., Alessi D.R., Pfeffer S.R. (2022) A feed-forward pathway drives LRRK2 kinase membrane recruitment and activation. Elife. 11, e79771. https://doi.org/10.7554/eLife.79771
- Berger Z., Smith K.A., Lavoie M.J. (2010) Membrane localization of LRRK2 is associated with increased formation of the highly active LRRK2 dimer and changes in its phosphorylation. Biochemistry. 49(26), 5511–5523. https://doi.org/10.1021/bi100157u
- Liu Z., Bryant N., Kumaran R., Beilina A., Abeliovich A., Cookson M.R., West A.B. (2018) LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Hum. Mol. Genet. 27(2), 385–395. https://doi.org/10.1093/hmg/ddx410
- Dzamko N., Inesta-Vaquera F., Zhang J., Xie C., Cai H., Arthur S., Tan L., Choi H., Gray N., Cohen P., Pedrioli P., Clark K., Alessi D.R. (2012) The IkappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling. PLoS One. 7(6), e39132. https://doi.org/10.1371/journal.pone.0039132
- Sheng Z., Zhang S., Bustos D., Kleinheinz T., Le Pichon C.E., Dominguez S.L., Solanoy H.O., Drummond J., Zhang X., Ding X., Cai F., Song Q., Li X., Yue Z., van der Brug M.P., Burdick D.J., Gunzner-Toste J., Chen H., Liu X., Estrada A.A., Sweeney Z.K., Scearce-Levie K., Moffat J.G., Kirkpatrick D.S., Zhu H. (2012) Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci. Transl. Med. 4(164), 164ra161. https://doi.org/10.1126/scitranslmed.3004485
- Marchand A., Drouyer M., Sarchione A., Chartier-Harlin M.C., Taymans J.M. (2020) LRRK2 phosphorylation, more than an epiphenomenon. Front. Neurosci. 14, 527. https://doi.org/10.3389/fnins.2020.00527
- Lavalley N.J., Slone S.R., Ding H., West A.B., Yacoubian T.A. (2016) 14–3–3 Proteins regulate mutant LRRK2 kinase activity and neurite shortening. Hum. Mol. Genet. 25(1), 109–122. https://doi.org/10.1093/hmg/ddv453
- Ysselstein D., Nguyen M., Young T.J., Severino A., Schwake M., Merchant K., Krainc D. (2019) LRRK2 kinase activity regulates lysosomal glucocerebrosidase in neurons derived from Parkinson’s disease patients. Nat. Commun. 10(1), 5570. https://doi.org/10.1038/s41467-019-13413-w
- Усенко Т.С., Башарова К.С., Безрукова А.И., Николаев М.А., Милюхина И.В., Байдакова Г.В., Захарова Е.Ю., Пчелина С.Н. (2022) Селективное ингибирование киназной активности LRRK2 как подход к терапии болезни Паркинсона. Мед. генетика. 21(12), 26–29. https://doi.org/10.25557/2073-7998.2022.12.26-2
- Sanyal A., Novis H.S., Gasser E., Lin S., LaVoie M.J. (2020) LRRK2 kinase inhibition rescues deficits in lysosome function due to heterozygous GBA1 expression in human iPSC-derived neurons. Front. Neurosci. 14, 442. https://doi.org/10.3389/fnins.2020.00442
- Kedariti M., Frattini E., Baden P., Cogo S., Civiero L., Ziviani E., Zilio G., Bertoli F., Aureli M., Kaganovich A., Cookson M.R., Stefanis L., Surface M., Deleidi M., Di Fonzo A., Alcalay R.N., Rideout H., Greggio E., Plotegher N. (2022) LRRK2 kinase activity regulates GCase level and enzymatic activity differently depending on cell type in Parkinson’s disease. NPJ Parkinsons Dis. 8, 92. https://doi.org/10.1038/s41531-022-00354-3
- Bae E.J., Kim D.K., Kim C., Mante M., Adame A., Rockenstein E., Ulusoy A., Klinkenberg M., Jeong G.R., Bae J.R., Lee C., Lee H.J., Lee B.D., Di Monte D.A., Masliah E., Lee S.J. (2018) LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nat. Commun. 9(1), 3465. https://doi.org/10.1038/s41467-018-05958-z
- Yin G., Lopes da Fonseca T., Eisbach S.E., Anduaga A.M., Breda C., Orcellet M.L., Szegő É.M., Guerreiro P., Lázaro D.F., Braus G.H., Fernandez C.O., Griesinger C., Becker S., Goody R.S., Itzen A., Giorgini F., Outeiro T.F., Zweckstetter M. (2014) α-Synuclein interacts with the switch region of Rab8a in a Ser129 phosphorylation-dependent manner. Neurobiol Dis. 70, 149‒161. https://doi.org/10.1016/j.nbd.2014.06.018
- Teixeira M., Sheta R., Idi W., Oueslati A. (2021) Alpha-synuclein and the endolysosomal system in Parkinson’s disease: guilty by association. Biomolecules. 11(9), 1333. https://doi.org/10.3390/biom11091333
- Inoshita T., Arano T., Hosaka Y., Meng H., Umezaki Y., Kosugi S., Morimoto T., Koike M., Chang H.Y., Imai Y., Hattori N. (2017) Vps35 in cooperation with LRRK2 regulates synaptic vesicle endocytosis through the endosomal pathway in Drosophila. Hum. Mol. Genet. 26(15), 2933–2948. https://doi.org/10.1093/hmg/ddx179
- Taylor M., Alessi D.R. (2020) Advances in elucidating the function of leucine-rich repeat protein kinase-2 in normal cells and Parkinson’s disease. Curr. Opin. Cell Biol. 63, 102–113. https://doi.org/10.1016/j.ceb.2020.01.001
- Khan S.S., Sobu Y., Dhekne H.S., Tonelli F., Berndsen K., Alessi D.R., Pfeffer S.R. (2021) Pathogenic lrrk2 control of primary cilia and hedgehog signaling in neurons and astrocytes of mouse brain. Elife. 10, e67900. https://doi.org/10.7554/eLife.67900
- Wang X., Yan M.H., Fujioka H., Liu J., Wilson-delfosse A., Chen S.G., Perry G., Casadesus G., Zhu X. (2012) LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum. Mol. Genet. 21(9), 1931–1944. https://doi.org/10.1093/hmg/dds003
- Kalogeropulou A.F., Zhao J., Bolliger M.F., Memou A., Narasimha S., Molitor T.P., Wilson W.H., Rideout H.J., Nichols J.R. (2018) P62/SQSTM1 is a novel leucine-rich repeat kinase 2 (LRRK2) substrate that enhances neuronal toxicity. Biochem. J. 475(7), 1271–1293. https://doi.org/10.1042/BCJ20170699
- Liu W.J., Ye L., Huang W.F., Guo L.J., Xu Z.G., Wu H.L., Yang C., Liu H.F. (2016) p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol. Biol. Lett. 21, 29. https://doi.org/10.1186/s11658-016-0031-z
- Su J., Liu F., Xia M., Xu Y., Li X., Kang J., Li Y., Sun L. (2015) p62 participates in the inhibition of NF-κB signaling and apoptosis induced by sulfasalazine in human glioma U251 cells. Oncol. Rep. 34(1), 235‒243. https://doi.org/10.3892/or.2015.3944
- Matsumoto G., Wada K., Okuno M., Kurosawa M., Nukina N. (2011) Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell. 44(2), 279‒289. https://doi.org/10.1016/j.molcel.2011.07.039
- Deng Z., Lim J., Wang Q., Purtell K., Wu S., Palomo G.M., Tan H., Manfredi G., Zhao Y., Peng J., Hu B., Chen S., Yue Z. (2020) ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy. 16(5), 917–931. https://doi.org/10.1080/15548627.2019.1644076
- Hennig P., Fenini G., Filippo M., Di Karakaya T., Beer H.D. (2021) The pathways underlying the multiple roles of p62 in inflammation and cancer. Biomedicines. 9(7), 707. https://doi.org/10.3390/biomedicines9070707
- Pérez-Carrión M.D., Posadas I., Solera J., Ceña V. (2022) LRRK2 and proteostasis in Parkinson’s disease. Int. J. Mol. Sci. 23(12), 6808. https://doi.org/10.3390/ijms23126808
- Gillardon F. (2009) Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability — a point of convergence in Parkinsonian neurodegeneration? J. Neurochem. 110(5), 1514–1522. https://doi.org/10.1111/j.1471-4159.2009.06235.x
- Imai Y., Gehrke S., Wang H.Q., Takahashi R., Hasegawa K., Oota E., Lu B. (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 27(18), 2432–2443. https://doi.org/10.1038/emboj.2008.163
- Krumova P., Reyniers L., Meyer M., Lobbestael E., Stauffer D., Gerrits B., Muller L., Hoving S., Kaupmann K., Voshol J., Fabbro D., Bauer A., Rovelli G., Taymans J.M., Bouwmeester T., Baekelandt V. (2015) Chemical genetic approach identifies microtubule affinity-regulating kinase 1 as a leucine-rich repeat kinase 2 substrate. FASEB J. 29(7), 2980–2992. https://doi.org/10.1096/fj.14-262329
- Matta S., Van Kolen K., da Cunha R., van den Bogaart G., Mandemakers W., Miskiewicz K., De Bock P.J., Morais V.A., Vilain S., Haddad D., Delbroek L., Swerts J., Chávez-Gutiérrez L., Esposito G., Daneels G., Karran E., Holt M., Gevaert K., Moechars D.W., De Strooper B., Verstreken P. (2012) LRRK2 controls an endoA phosphorylation cycle in synaptic endocytosis. Neuron. 75(6), 1008–1021. https://doi.org/10.1016/j.neuron.2012.08.022
- Islam M.S., Nolte H., Jacob W., Ziegler A.B., Pütz S., Grosjean Y., Szczepanowska K., Trifunovic A., Braun T., Heumann H., Heumann R., Hovemann B., Moore D.J., Krüger M. (2016) Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson’s disease. Hum. Mol. Genet. 25(24), 5365–5382. https://doi.org/10.1093/hmg/ddw352
- Kawakami F., Yabata T., Ohta E., Maekawa T., Shimada N., Suzuki M., Maruyama H., Ichikawa T., Obata F. (2012) LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth. PLoS One. 7(1), e30834. https://doi.org/10.1371/journal.pone.0030834
- Kanao T., Venderova K., Park D.S., Unterman T., Lu B., Imai Y. (2010) Activation of FoxO by LRRK2 induces expression of proapoptotic proteins and alters survival of postmitotic dopaminergic neuron in Drosophila. Hum. Mol. Genet. 19(19), 3747–3758. https://doi.org/10.1093/hmg/ddq289
- Yun H.J., Park J., Ho D.H., Kim H., Kim C.H., Oh H., Ga I., Seo H., Chang S., Son I., Seol W. (2013) LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp. Mol. Med. 45(8), e36. https://doi.org/10.1038/emm.2013.68
- Martin I., Kim J.W., Lee B.D., Kang H.C., Xu J.C., Jia H., Stankowski J., Kim M.S., Zhong J., Kumar M., Andrabi S.A., Xiong Y., Dickson D.W., Wszolek Z.K., Pandey A., Dawson T.M., Dawson V.L. (2014) Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson’s disease. Cell. 157(2), 472–485. https://doi.org/10.1016/j.cell.2014.01.064
- Dhekne H.S., Yanatori I., Gomez R.C., Tonelli F., Diez F., Schüle B., Steger M., Alessi D.R., Pfeffer S.R. (2018) A pathway for Parkinson’s disease LRRK2 kinase to block primary cilia and sonic hedgehog signaling in the brain. Elife. 7, e40202. https://doi.org/10.7554/eLife.40202
- Rivero-Ríos P., Romo-Lozano M., Madero-Pérez J., Thomas A.P., Biosa A., Greggio E., Hilfiker S. (2019) The G2019S variant of leucine-rich repeat kinase 2 (LRRK2) alters endolysosomal trafficking by impairing the function of the GTPase RAB8A. J. Biol. Chem. 294(13), 4738–4758. https://doi.org/10.1074/jbc.RA118.005008
- Yue M., Hinkle K.M., Davies P., Trushina E., Fiesel F.C., Christenson T.A., Schroeder A.S., Zhang L., Bowles E., Behrouz B., Lincoln S.J., Beevers J.E., Milnerwood A.J., Kurti A., McLean P.J., Fryer J.D., Springer W., Dickson D.W., Farrer M.J., Melrose H.L. (2015) Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock-in mice. Neurobiol. Dis. 78, 172–195. https://doi.org/10.1016/j.nbd.2015.02.031
- Madureira M., Connor-Robson N., Wade-Martins R. (2020) “LRRK2: autophagy and lysosomal activity”. Front. Neurosci. 14, 498. https://doi.org/10.3389/fnins.2020.00498
- Orenstein S.J., Kuo S.H., Tasset I., Arias E., Koga H., Fernandez-Carasa I., Cortes E., Honig L.S., Dauer W., Consiglio A., Raya A., Sulzer D., Cuervo A.M. (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat. Neurosci. 16(4), 394–406. https://doi.org/10.1038/nn.3350
- Jia H., Liang Z., Zhang X., Wang J., Xu W., Qian H. (2017) 14–3–3 proteins: an important regulator of autophagy in diseases. Am.J. Transl. Res. 9(11), 4738–4746.
- Stark C., Breitkreutz B.J., Reguly T., Boucher L., Breitkreutz A., Tyers M. (2006) BioGRID: a general repository for interaction datasets. Nucl. Acids Res. 34, D535–539. https://doi.org/10.1093/nar/gkj109
- Alessi D.R., Sammler E. (2018) LRRK2 kinase in Parkinson’s disease. Science. 360(6384), 36–37. https://doi.org/10.1126/science.aar5683
- Naskar A., Bhanja K.K., Roy R.K., Patra N. (2023) Role of the residue Q1919 in increasing kinase activity of G2019S LRRK2 kinase: a computational study. ChemPhysChem. 24(21), e202300306. https://doi.org/10.1002/cphc.202300306
- Weng J.H., Aoto P.C., Lorenz R., Wu J., Schmidt S.H., Manschwetus J.T., Kaila-Sharma P., Silletti S., Mathea S., Chatterjee D., Knapp S., Herberg F.W., Taylor S.S. (2022) LRRK2 dynamics analysis identifies allosteric control of the crosstalk between its catalytic domains. PLoS Biol. 20(2), e3001427. https://doi.org/10.1371/journal.pbio.3001427
- Hui K.Y., Fernandez-Hernandez H., Hu J., Schaffner A., Pankratz N., Hsu N.Y., Chuang L.S., Carmi S., Villaverde N., Li X., Rivas M., Levine A.P., Bao X., Labrias P.R., Haritunians T., Ruane D., Gettler K., Chen E., Li D., Schiff E.R., Pontikos N., Barzilai N., Brant S.R., Bressman S., Cheifetz A.S., Clark L.N., Daly M.J., Desnick R.J., Duerr R.H., Katz S., Lencz T., Myers R.H., Ostrer H., Ozelius L., Payami H., Peter Y., Rioux J.D., Segal A.W., Scott W.K., Silverberg M.S., Vance J.M., Ubarretxena-Belandia I., Foroud T., Atzmon G., Pe’er I., Ioannou Y., McGovern D.P.B., Yue Z., Schadt E.E., Cho J.H., Peter I. (2018) Functional variants in the LRRK2 gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease. Sci. Transl. Med. 10(423), eaai7795. https://doi.org/10.1126/scitranslmed.aai7795
- Fraser K.B., Moehle M.S., Daher J.P.L., Webber P.J., Williams J.Y., Stewart C.A., Yacoubian T.A., Cowell R.M., Dokland T., Ye T., Chen D., Siegal G.P., Galemmo R.A., Tsika E., Moore D.J., Standaert D.G., Kojima K., Mobley J.A., West A.B. (2013) LRRK2 secretion in exosomes is regulated by 14-3-3. Hum. Mol. Genet. 22(24), 4988–5000. https://doi.org/10.1093/hmg/ddt346
- Zhang P., Fan Y., Ru H., Wang L., Magupalli V.G., Taylor S.S., Alessi D.R., Wu H. (2019) Crystal structure of the WD40 domain dimer of LRRK2. Proc. Natl. Acad. Sci. USA. 116(5), 1579–1584. https://doi.org/10.1073/pnas.1817889116
- Wojewska D.N., Kortholt A. (2021) Lrrk2 targeting strategies as potential treatment of Parkinson’s disease. Biomolecules. 11(8), 1101. https://doi.org/10.3390/biom11081101
- Deng X., Dzamko N., Prescott A., Davies P., Liu Q., Yang Q., Lee J.D., Patricelli M.P., Nomanbhoy T.K., Alessi D.R., Gray N.S. (2011) Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat. Chem. Biol. 7(4), 203–205. https://doi.org/10.1038/nchembio.538
- Reith A.D., Bamborough P., Jandu K., Andreotti D., Mensah L., Dossang P., Choi H.G., Deng X., Zhang J., Alessi D.R., Gray N.S. (2012) GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorg. Med. Chem. Lett. 22(17), 5625–5629. https://doi.org/10.1016/j.bmcl.2012.06.104
- Estrada A.A., Liu X., Baker-Glenn C., Beresford A., Burdick D.J., Chambers M., Chan B.K., Chen H., Ding X., Dipasquale A.G., Dominguez S.L., Dotson J., Drummond J., Flagella M, Flynn S., Fuji R., Gill A., Gunzner-Toste J., Harris S.F., Heffron T.P., Kleinheinz T., Lee D.W., Le Pichon C.E., Lyssikatos J.P., Medhurst A.D., Moffat J.G., Mukund S., Nash K., Scearce-Levie K., Sheng Z., Shore D.G., Tran T., Trivedi N., Wang S., Zhang S., Zhang X., Zhao G., Zhu H., Sweeney Z.K. (2012) Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J. Med. Chem. 55 (22), 9416–9433. https://doi.org/10.1021/jm301020q
- Henderson J.L., Kormos B.L., Hayward M.M., Coffman K.J., Jasti J., Kurumbail R.G., Wager T.T., Verhoest P.R., Noell G.S., Chen Y., Needle E., Berger Z., Steyn S.J., Houle C., Hirst W.D., Galatsis P. (2015) Discovery and preclinical profiling of 3-[4-(morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. J. Med. Chem. 58(1). https://doi.org/10.1021/jm5014055
- Baptista M.A.S., Merchant K., Barrett T., Bhargava S., Bryce D.K., Michael Ellis J., Estrada A.A., Fell M.J., Fiske B.K., Fuji R.N., Galatsis P., Henry A.G., Hill S., Hirst W., Houle C., Kennedy M.E., Liu X., Maddess M.L., Markgraf C., Mei H., Meier W.A., Needle E., Ploch S., Royer C., Rudolph K., Sharma A.K., Stepan A., Steyn S., Trost C., Yin Z., Yu H., Wang X., Sherer T.B. (2020) LRRK2 inhibitors induce reversible changes in nonhuman primate lungs without measurable pulmonary deficits. Sci. Transl. Med. 12(540), eaav0820. https://doi.org/10.1126/scitranslmed.aav0820
- Fell M.J., Mirescu C., Basu K., Cheewatrakoolpong B., DeMong D.E., Ellis J.M., Hyde L.A., Lin Y., Markgraf C.G., Mei H., Miller M., Poulet F.M., Scott J.D., Smith M.D., Yin Z., Zhou X, Parker E.M., Kennedy M.E., Morrow J.A. (2015) MLi-2, a potent, selective, and centrally active compound for exploring the therapeutic potential and safety of LRRK2 kinase inhibition. J. Pharmacol. Exp. Ther. 355(3), 397–409. https://doi.org/10.1124/jpet.115.227587
- Jennings D., Huntwork-Rodriguez S., Henry A.G., Sasaki J.C., Meisner R., Diaz D., Solanoy H., Wang X., Negrou E., Bondar V.V., Ghosh R., Maloney M.T., Propson N.E., Zhu Y., Maciuca R.D., Harris L., Kay A., LeWitt P., King T.A., Kern D., Ellenbogen A., Goodman I., Siderowf A., Aldred J., Omidvar O., Masoud S.T., Davis S.S., Arguello A., Estrada A.A., de Vicente J., Sweeney Z.K., Astarita G., Borin M.T., Wong B.K., Wong H., Nguyen H., Scearce-Levie K., Ho C., Troyer M.D. (2022) Preclinical and clinical evaluation of the LRRK2 inhibitor DNL201 for Parkinson’s disease. Sci. Transl. Med. 14(648), eabj2658. https://doi.org/10.1126/scitranslmed.abj2658
- Zhao H.T., John N., Delic V., Ikeda-Lee K., Kim A., Weihofen A., Swayze E.E., Kordasiewicz H.B., West A.B., Volpicelli-Daley L.A. (2017) LRRK2 antisense oligonucleotides ameliorate α-synuclein inclusion formation in a Parkinson’s disease mouse model. Mol. Ther. Nucl. Acids. 8, 508–519. https://doi.org/10.1016/j.omtn.2017.08.002
- Korecka J.A., Thomas R., Hinrich A.J., Moskites A.M., Macbain Z.K., Hallett P.J., Isacson O., Hastings M.L. (2021) Splice-switching antisense oligonucleotides reduce LRRK2 kinase activity in human LRRK2 transgenic mice. Mol. Ther. Nucl. Acids. 21, 623–635. https://doi.org/10.1016/j.omtn.2020.06.027
- Taymans J.M., Fell M., Greenamyre T., Hirst W.D., Mamais A., Padmanabhan S., Peter I., Rideout H., Thaler A. (2023) Perspective on the current state of the LRRK2 field. NPJ Parkinsons Dis. 9(1), 104. https://doi.org/10.1038/s41531-023-00544-7
- Gündner A.L., Duran-Pacheco G., Zimmermann S., Ruf I., Moors T., Baumann K., Jagasia R., van de Berg W.D.J., Kremer T. (2019) Path mediation analysis reveals GBA impacts Lewy body disease status by increasing α-synuclein levels. Neurobiol. Dis. 121, 205–213. https://doi.org/10.1016/j.nbd.2018.09.015
- Navarro-Romero A., Fernandez-Gonzalez I., Riera J, Montpeyo M., Albert-Bayo M., Lopez-Royo T., Castillo-Sanchez P., Carnicer-Caceres C., Arranz-Amo J.A., Castillo-Ribelles L., Pradas E., Casas J., Vila M., Martinez-Vicente M. (2022) Lysosomal lipid alterations caused by glucocerebrosidase deficiency promote lysosomal dysfunction, chaperone-mediated-autophagy deficiency, and alpha-synuclein pathology. NPJ Parkinsons Dis. 8(1), 126. https://doi.org/10.1038/s41531-022-00397-6
- Yang W., Li X., Yin N. (2020) Increased α-synuclein oligomerization is associated with decreased activity of glucocerebrosidase in the aging human striatum and hippocampus. Neurosci. Lett. 733, 135093. https://doi.org/10.1016/j.neulet.2020.135093
- Mullin S., Smith L., Lee K., D’Souza G., Woodgate P., Elflein J., Hällqvist J., Toffoli M., Streeter A., Hosking J., Heywood W.E., Khengar R., Campbell P., Hehir J., Cable S., Mills K., Zetterberg H., Limousin P., Libri V., Foltynie T., Schapira A.H.V. (2020) Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations: a nonrandomized, noncontrolled trial. JAMA Neurol. 77(4), 427‒434.
- Kopytova A.E., Rychkov G.N., Nikolaev M.A., Baydakova G.V., Cheblokov A.A., Senkevich K.A., Bogdanova D.A., Bolshakova O.I., Miliukhina I.V., Bezrukikh V.A., Salogub G.N., Sarantseva S.V., Usenko T.C., Zakharova E.Y., Emelyanov A.K., Pchelina S.N. (2021) Ambroxol increases glucocerebrosidase (GCase) activity and restores GCase translocation in primary patient-derived macrophages in Gaucher disease and Parkinsonism. Parkinsonism Relat. Disord. 84, 112–121. https://doi.org/10.1016/j.parkreldis.2021.02.003
- Senkevich K.A., Kopytova A.E., Usenko T.S., Emelyanov A.K., Pchelina S.N. (2021) Parkinson’s disease associated with GBA gene mutations: molecular aspects and potential treatment approaches. Acta Naturae. 13(2), 70–78. https://doi.org/10.32607/actanaturae.11031
- Ramírez M.B., Ordóñez A.J.L., Fdez E., Madero-Pérez J., Gonnelli A., Drouyer M., Chartier-Harlin M.C., Taymans J.M., Bubacco L., Greggio E., Hilfiker S. (2017) GTP binding regulates cellular localization of Parkinson’s disease-associated LRRK2. Hum. Mol. Genet. 26(14), 2747–2767. https://doi.org/10.1093/hmg/ddx161
- Araki M., Ito G., Tomita T. (2018) Physiological and pathological functions of LRRK2: implications from substrate proteins. Neuronal. Signal. 2(4), NS20180005. https://doi.org/10.1042/NS20180005
- Ho P.W.L., Chang E.E.S., Leung C.T., Liu H., Malki Y., Pang S.Y.Y., Choi Z.Y.K., Liang Y., Lai W.S., Ruan Y., Leung K.M.Y., Yung S., Mak J.C.W., Kung M.H.W., Ramsden D.B., Ho S.L. (2022) Long-term inhibition of mutant LRRK2 hyper-kinase activity reduced mouse brain α-synuclein oligomers without adverse effects. NPJ Parkinsons Dis. 8(1), 115. https://doi.org/10.1038/s41531-022-00386-9
Қосымша файлдар
