Гены β-actin и 36B4 у мягкого коралла Sclerophytum heterospiculatum (Verseveldt, 1970)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Коралловые полипы являются объектом для различных исследований, в том числе в области молекулярной биологии. На данный момент большое внимание уделяется молекулярным исследованиям кораллов подкласса Hexacorallia. Для этой цели мы установили и охарактеризовали последовательности генов β-actin и 36B4 из мягкого коралла Sclerophytum heterospiculatum (Verseveldt, 1970). Гены 36B4 и β-actin необходимы для нормального функционирования клеток, отличаются высокой консервативностью между таксонами, что подтверждается филогенетическим деревом, полученным в этой работе.

Ключевые слова

Полный текст

Доступ закрыт

Об авторах

Е. T. Бизикашвили

Национальный научный центр морской биологии им. А.В. Жирмунского Дальневосточного отделения Российской академии наук

Автор, ответственный за переписку.
Email: bilielena801@gmail.com
Россия, Владивосток, 690041

Е. В. Шамшурина

Национальный научный центр морской биологии им. А.В. Жирмунского Дальневосточного отделения Российской академии наук

Email: bilielena801@gmail.com
Россия, Владивосток, 690041

Т. В. Сикорская

Национальный научный центр морской биологии им. А.В. Жирмунского Дальневосточного отделения Российской академии наук

Email: bilielena801@gmail.com
Россия, Владивосток, 690041

Список литературы

  1. Daly M., Brugler M.R., Cartwright P. et al. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus* // Zootaxa. 2007. V. 1668. P. 127–182. https://doi.org/10.5281/zenodo.180149
  2. Tursch B., Tursch A. The soft coral community on a sheltered reef quadrat at Laing Island (Papua New Guinea) // Mar. Biol. 1982. V. 68. P. 321–332. https://doi.org/10.1007/bf00409597
  3. Fabricius K.E. Soft coral abundance on the central Great Barrier Reef: Effects of Acanthaster planci, space availability, and aspects of the physical environment // Coral Reefs. 1997. V. 16. P. 159–167. https://doi.org/10.1007/s003380050070
  4. Boilard A., Dube C.E., Gruet C. et al. Defining coral bleaching as a microbial dysbiosis within the coral holobiont // Microorganisms. 2020. V. 8. https://doi.org/10.3390/microorganisms8111682
  5. Sikorskaya T.V., Ermolenko E.V. Changes of phospholipid molecular species profile upon bleaching and subsequent restoration of coral sinularia heterospiculata // Chem. Nat. Compd. 2024. V. 60. P. 215–219. https://doi.org/10.1007/s10600-024-04291-w
  6. Dean J.M., Lodhi I.J. Structural and functional roles of ether lipids // Protein Cell. 2018. V. 9. P. 196–206. https://doi.org/10.1007/s13238-017-0423-5
  7. Karge W.H., Schaefer E.J., Ordovas J.M. Quantification of mRNA by polymerase chain reaction (PCR) using an internal standard and a nonradioactive detection method // Methods Mol. Biol. 1998. V. 110. P. 43–61. https://doi.org/10.1385/1-59259-582-0:43
  8. Kozera B., Rapacz M. Reference genes in real-time PCR // J. Appl. Genet. 2013. V. 54. P. 391–406. https://doi.org/10.1007/s13353-013-0173-x
  9. Nguyen L.-T., Schmidt H.A., von Haeseler A. et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies // Mol. Biol. Evol. 2015. V. 32. P. 268–274. https://doi.org/10.1093/molbev/msu300
  10. Hoang D.T., Chernomor O., von Haeseler A. et al. Ufboot2: Improving the ultrafast bootstrap appro-ximation // Mol. Biol. Evol. 2018. V. 35. P. 518–522. https://doi.org/10.1093/molbev/msx281
  11. Kalyaanamoorthy S., Minh B.Q., Wong T.K.F. et al. ModelFinder: Fast model selection for accurate phylogenetic estimates // Nat. Methods. 2017. V. 14. P. 587–589. https://doi.org/10.1038/nmeth.4285
  12. Gagou M., Ballesta J.P., Kouyanou S. Cloning and characterization of the ribosomal protein CcP0 of the medfly Ceratitis capitata // Insect. Mol. Biol. 2000. V. 9. P. 47–55. https://doi.org/10.1046/j.1365-2583.2000.00156.x
  13. Kabsch W., Vandekerckhove J. Structure and function of actin // Annu. Rev. Biophys. Biomol. Struct. 1992. V. 21. P. 49–76. https://doi.org/10.1146/annurev.bb.21.060192.000405
  14. Ishii K., Washio T., Uechi T. et al. Characteristics and clustering of human ribosomal protein genes // BMC Genomics. 2006. V. 7. P. 37. https://doi.org/10.1186/1471-2164-7-37

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Филогенетические деревья, построенные на основе метода максимального правдоподобия (ML) для аминокислотных последовательностей генов. а – 36В4, б – β-actin различных организмов; цифры в узлах означают SH-aLRT-поддержку (%) / поддержку сверхбыстрой начальной загрузки (%).

Скачать (236KB)

© Российская академия наук, 2025