The genetic study of a museum anthropological sample from the urban burial of Staraya Ryazan of the 11th–13th centuries

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Old (Staraya) Ryazan has a special place in the history of Rus' cities. Following its destruction by Batu's troops in December 1237, the city declined and was ultimately abandoned in the 14th century. The new city was built in a different place. Studies of the population of Old Ryazan based on anthropological museum collections, allow us to assess the genetic structure of the urban population mainly of the pre-Mongol period. The article discusses the results of the analysis of one sample from the materials obtained during the excavations of A.V. Selivanov. The results of anthropological and whole-genome analysis showed that the sample under study belonged to a woman. Reconstruction and analysis of the complete sequence of mitochondrial DNA (mtDNA) indicated its belonging to the Western European haplogroup HV4a1a. This study is the first finding of this mitochondrial haplogroup among the medieval population of Rus'. The discovered mtDNA maternal lineage is currently rare and predominantly distributed among the European population of the Franco-Cantabrian region (the territory of northern Spain and south France). The closest matches in the complete mtDNA sequence (a difference of one nucleotide position) with the studied sample were found in modern representatives of the Basques and one individual from Denmark. The results obtained may indicate the Western European maternal ancestry of the studied woman from medieval Old Ryazan and the existence of possible common relatives with the modern population of Western Europe. Our study is an example of the use of modern genomic methods to reconstruct the individual history of people whose anthropological materials are presented in museum collections. In addition, the obtained results contribute to understanding the peculiarities of the formation of the genetic structure of the urban population of Rus'.

Full Text

Restricted Access

About the authors

A. D. Soshkina

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: andreeva@rogaevlab.ru
Russian Federation, Moscow, 119991

T. V. Andreeva

Sirius University; Vavilov Institute of General Genetics of the Russian Academy of Sciences; Lomonosov Moscow State University

Author for correspondence.
Email: andreeva@rogaevlab.ru

Scientific Center of Genetics and Life Sciences, Center of Genetics and Genetic Technologies, Faculty of Biology, Department of Genetics

Russian Federation, Sirius Federal Territory, village Sirius, 354340; Moscow, 119991; Moscow, 119234

S. S. Kunizheva

Sirius University; Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: andreeva@rogaevlab.ru

Scientific Center of Genetics and Life Sciences

Russian Federation, Sirius Federal Territory, village Sirius, 354340; Moscow, 119991

I. Y. Adrianova

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: andreeva@rogaevlab.ru
Russian Federation, Moscow, 119991

A. B. Malyarchuk

Vavilov Institute of General Genetics of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: andreeva@rogaevlab.ru

Center of Genetics and Genetic Technologies, Faculty of Biology, Department of Genetics

Russian Federation, Moscow, 119991; Moscow, 119234

P. D. Manakhov

Lomonosov Moscow State University

Email: andreeva@rogaevlab.ru

Scientific Research Institute and Museum of Anthropology

Russian Federation, Moscow, 125009

A. P. Buzhilova

Lomonosov Moscow State University

Email: andreeva@rogaevlab.ru

Scientific Research Institute and Museum of Anthropology

Russian Federation, 125009 Russia

I. Yu. Strikalov

Institute of Archaeology of the Russian Academy of Sciences

Email: andreeva@rogaevlab.ru
Russian Federation, Moscow, 117292

E. I. Rogaev

Sirius University; University of Massachusetts

Email: evivrecc@gmail.com

Scientific Center of Genetics and Life Sciences, Chan Medical School, Department of Psychiatry

Russian Federation, Sirius Federal Territory, village Sirius, 354340; Shrewsbury, 01545 USA

References

  1. Монгайт А.Л. Старая Рязань // Матер. и исследования по археологии СССР. № 49. Матер. и исследования по археологии древнерусских городов. Т. IV. М.: Изд-во АН СССР, 1955. 228 с.
  2. Даркевич В.П., Борисевич Г.В. Древняя столица Рязанской земли: XI–XIII вв. М.: Кругъ, 1995. 448 с.
  3. Селиванов А.В. О раскопках в старой Рязани и в Ново-Ольговском городке. Рязань, 1890. 6 с.
  4. Андреева Т.В., Добровольская М.В., Седов Вл.В. и др. Люди из каменного саркофага № 11 Юрьева монастыря: генетическая история на основе митохондриальных геномов // КСИА. 2023. № 270. С. 418–437.
  5. Андреева Т.В., Малярчук А.Б., Григоренко А.П. и др. Археогенетический анализ индивида из захоронения с территории древнего Ярославского Кремля // КСИА. 2021. Вып. 265. С. 294–308.
  6. Andreeva T.V., Manakhov A.D., Gusev F.E. et al. Genomic analysis of a novel neanderthal from Mezmaiskaya Cave provides insights into the genetic relationships of Middle Palaeolithic populations // Sci. Reports. 2022. V. 12. P. 3016. https://doi.org/10.1038/s41598-022-16164-9
  7. Gansauge M.T., Gerber T., Glocke I. et al. Single-sranded DNA library peparation from highly degraded DNA uing T4 DNA ligase // Nucl. Acids Res. 2017. V. 45. I. 10. P. e79. https://doi.org/10.1093/nar/gkx033
  8. Schubert M., Lindgreen S., Orlando L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging // BMC Res. Notes. 2016. V. 12. № 9. P. 88. https://doi.org/10.1186/s13104-016-1900-2
  9. Li H., Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform // Bioinformatics. 2009. V. 25. № 14. P. 1754–1760. https://doi.org/10.1093/bioinformatics/btp324
  10. Jónsson H., Ginolhac A., Schubert M. et al. MapDamage 2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters // Bioinformatics. 2013. V. 29. № 13. P. 1682–1684. https://doi.org/10.1093/bioinformatics/btt193
  11. Anastasiadou K., Silva M., Booth T. et al. Detection of chromosomal aneuploidy in ancient genomes // Commun Biol. 2024. V. 7. № 1. P. 14. https://doi.org/10.1038/s42003-023-05642-z
  12. Weissensteiner H., Pacher D., Kloss-Brandstätter A. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing // Nucl. Acids Res. 2016. V. 44. P. 58–63. https://doi.org/10.1093/nar/gkw233
  13. GenBank [Электронный ресурс]. URL: www.ncbi.nlm.nih.gov/genbank // (дата обращения: 15.05.2024).
  14. BLAST [Электронный ресурс]. URL: https://blast.ncbi. nlm.nih.gov (дата обращения: 15.05.2024).
  15. AmtDB [Электронный ресурс]. URL: AmtDB | About (дата обращения: 15.05.2024).
  16. YFull-MTree 1.02 [Электронный ресурс]. URL: https://www.yfull.com/mtree/ (дата обращения: 15.05.2024).
  17. Mallick S., Micco A., Mah M. et al. The allen ancient DNA resource (AADR) a curated compendium of ancient human genomes // Scientific Data. 2024. V. 11. № 1. P. 182. http://doi.org/10.1038/s41597-024-03031-7 URL:
  18. Eltsov.org [Электронный ресурс]. URL: http://eltsov.org (дата обращения: 15.05.2023).
  19. Takahashi K., Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used // Mol. Biol. Evol. 2000. V. 17. № 8. P. 1251–1258. http://doi.org/10.1093/oxfordjournals.molbev.a026408
  20. http://www.phylotree.org (дата обращения: 15.05.2024).
  21. Robinson J.T., Thorvaldsdóttir H., Winckler W. et al Integrative Genomics Viewer // Nat. Biotechnol. 2011. V. 29. № 1. P. 24–26. http://doi.org/10.1038/nbt.1754
  22. GnomAD v 4.1.0 [Электронный ресурс]. URL: https://gnomad.broadinstitute.org (дата обращения: 15.05.2024).
  23. Soares P., Ermini L, Thomson N. et al. Correcting for purifying selection: An improved human mitochondrial molecular clock // Am. J. Hum. Genet. 2009. V. 84. P. 740–759. http://doi.org/10.1016/j.ajhg.2009.05.001
  24. De Fanti S., Barbieri C., Sarno S. et al. Fine dissection of human mitochondrial DNA haplogroup HV lineages reveals paleolithic signatures from European glacial refugia // PLoS One. 2015. V. 10. № 12. http://doi.org/10.1371/journal.pone.0144391
  25. Gómez-Carballa A., Olivieri A., Behar D.M. et al. Genetic continuity in the Franco-Cantabrian region: New clues from autochthonous mitogenomes // PLoS One. 2012. V. 7. № 3. http://doi.org/10.1371/journal.pone.0032851
  26. Cardoso S., Valverde L., Alfonso-Sánchez M.A. et al. The expanded mtDNA phylogeny of the Franco-Cantabrian region upholds the pre-neolithic genetic substrate of Basques // PLoS One. 2013. V. 8. № 7. http://doi.org/10.1371/journal.pone.0067835
  27. García O., Fregel R., Larruga J. et al. Using mitochondrial DNA to test the hypothesis of a European post-glacial human recolonization from the Franco-Cantabrian refuge // Heredity. 2011. V. 106. P. 37–45. http://doi.org/10.1038/hdy.2010.47
  28. García Ó., Alonso S., Huber N. et al. Forensically relevant phylogeographic evaluation of mitogenome variation in the Basque Country. // Forensic Sci. Int. Genet. 2020. V. 46. http://doi.org/10.1016/j.fsigen.2020.102260
  29. Cardoso S., Valverde L., Alfonso-Sánchez M.A. et al. The expanded mtDNA phylogeny of the Franco-Cantabrian region upholds the pre-neolithic genetic substrate of Basques // PLoS One. 2013. V. 8. № 7. http://doi.org/10.1371/journal.pone.0067835.
  30. Olalde I., Brace S., Allentoft M. et al. The Beaker phenomenon and the genomic transformation of northwest Europe // Nature. 2018. V. 555. P. 190–196. http://doi.org/10.1038/nature25738
  31. Gnecchi-Ruscone G.A., Szécsényi-Nagy A., Koncz I. et al. Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites // Cell. 2022. V. 185. № 8. P. 1402–1413. http://doi.org/10.1016/j.cell.2022.03.007
  32. Lazaridis I., Alpaslan-Roodenberg S., Acar A. et al. The genetic history of the Southern Arc: A bridge between West Asia and Europe // Science. 2022. V. 377. http://doi.org/10.1126/science.abm4247
  33. Лихачев Д.С. Великое наследие // Избр. работы в трех томах. Том 2. Л.: Худож. лит.-ра, 1987. С. 154–227.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Plan of the ancient settlement of Old Ryazan, compiled by A.V. Selivanov based on the results of excavations in 1888. The location of the necropolis next to the Cathedral Church is marked with an asterisk [3].

Download (353KB)
3. Fig. 2. Skull of a woman (No. 6736) from the craniological collection of A.V. Selivanov (excavations of Old Ryazan, 1888). a – side view, b – front view, c – top view.

Download (225KB)
4. Fig. 3. General view of the tooth of individual AB147 with a fragment selected for study.

Download (220KB)
5. Fig. 4. Profile of nucleotide substitutions of the mitochondrial DNA sequence obtained using the mapDamage2 program [10]. The red line corresponds to the profile of C>T substitutions.

Download (100KB)
6. Fig. 5. Haplotype network of the mitochondrial lineage HV4a1a. Substitutions are indicated along the branch relative to the reference genome (rCRS), numbers indicate the time of the haplogroup emergence according to the molecular mitochondrial clock, tln – thousand years ago [16, 23, 25].

Download (58KB)
7. Fig. 6. Fragment of the phylogenetic tree of the mitochondrial lineage HV4a1a, constructed using the mtPhyl program [18]. The numbers on the branches indicate differences in nucleotide positions relative to the mtDNA reference sequence (rCRS); mitochondrial haplogroups are shown in red; < indicates the nucleotide position of a repeating mutation, Gap is an undefined position in mtDNA. For each sample, its GenBank number [13], place of origin and, if available in the database, ethnicity are indicated; the studied sample AB147 is shown in gray.

Download (247KB)

Copyright (c) 2025 Russian Academy of Sciences