Mechanisms of modulating action of thymoquinone (component of black cumin, Nigella sativa), affecting the activity of some nuclear and mitochondrial genes in mice tissue after exposure to X-Ray radiation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper discusses a promising herbal preparation – thymoquinone, a component of black cumin (Nigella sativa), studied in experimental animals (mice, rats) in many pathologies, characterized by a positive effect and lack of toxic effect. The drug has been studied in a wide range of doses for injection and oral administration. Thymoquinone has antimicrobial, antiviral, anti-inflammatory, and radioprotective properties. The main damaging component of ionizing radiation is oxidative stress. For this reason, radioprotectors have recently been evaluated based on the drug’s ability to reduce oxidative stress. As markers of oxidative stress, we used parameters of changes in the expression of nuclear and mitochondrial DNA genes that perform essential functions in the cell. C57Bl/6 mice were administered thymoquinone (10 mg/kg) after 30 min. irradiation was performed (6 Gy). After 6 and 24 hours, gene expression in brain and spleen cells was studied using real-time PCR. It was shown that the activity of nuclear genes increased after exposure to radiation, but was normalized if thymoquinone was administered to mice 30 minutes before irradiation. Mitochondrial genes were also modified to target the activity of control cells. The test results show that thymoquinone has protective properties and may be promising as a radioprotector.

Texto integral

Acesso é fechado

Sobre autores

S. Abdullaev

Burnazyan Federal Medical Biophysical Center of Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: saabdullaev@gmail.com
Rússia, Moscow; Moscow oblast, Pushchino

D. Fomina

Burnazyan Federal Medical Biophysical Center of Russia

Email: saabdullaev@gmail.com
Rússia, Moscow

N. Raeva

Burnazyan Federal Medical Biophysical Center of Russia

Email: saabdullaev@gmail.com
Rússia, Moscow

M. Popov

Vladimirsky Moscow Regional Research Clinical Institute

Email: saabdullaev@gmail.com
Rússia, Moscow

T. Maksimova

Sechenov First Moscow State Medical University

Email: saabdullaev@gmail.com
Rússia, Moscow

G. Zasukhina

Burnazyan Federal Medical Biophysical Center of Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: saabdullaev@gmail.com
Rússia, Moscow; Moscow

Bibliografia

  1. Ильин Л.А. Медицинские аспекты противодействия радиологическому и ядерному терроризму. М.: Наука, 2018. 392 с.
  2. Ушаков И.Б. Космос, радиация, человек. М.: Научтехлитиздат, 2021. 352 с.
  3. Dogru S., Taysi S., Yucel A. Effect soft hymoquinone in the lungs of rats against radiation-induced oxidative stress // Eur. Rev. Med. and Pharmacol. Sci. 2024. V. 28. № 1. P. 191–198. https://doi.org/10.26355/eurrev_202401_34904
  4. Михайлов В.Ф., Засухина Г.Д. Новый подход к стимуляции защитных систем организма малыми дозами радиации // Успехи соврем. биол. 2020. Т. 140. № 3. С. 244–252. https://doi.org/10.31857/S0042132420030060
  5. Altay H., Demir E., Binici H. et al. Radioprotective effects of propolis and caffeic acid phenethyl ester on the tong-tissues // Eur. J. Theоr. 2020. V. 26. P. 202–207. https://doi.org/10.5152/eurjther.2020.19047
  6. Taysi S., Algburi F., Mohammed Z. et al. Thymoquinone: А review on its pharmacological importance and its associftion with oxidative stress, COVID 19 and radiotherapy // Mini Rev. Med. Chem. 2022. V. 22. № 14. P. 1874–1875 https://doi.org/10.2174/1389557522666220104151225
  7. Sadeghi E., Inenshahidi M., Hosseinzadeh H. Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: А review // Mol. Biol. Rep. 2023. V. 50. P. 5439–5454. https://doi.org/10.1007/s11033-023-08363-y
  8. Tiwari G., Cupta M., Devhare L., Tiwari R. Therapeutic and phytochemical properties of thymoquinone derived from Nigella sativa // Curr. Drug Res. Rev. 2023. https://doi.org/10.2174/2589977515666230811092410
  9. Demir Е., Taysi S., Ulisal H. et al. Nigella sativa oil and thymoquinone reduce oxidative stress in the brain tissue of rats exposed to total head irradiation // Int. J. Radiat. Biol. 2020. V. 96. № 2. P. 228–235. https://doi.org/10.1080/09553002.2020.1683636
  10. Akyuz M., Taysi S., Baysal E. et al. Radioprotective effect of thymoquinone on salvary gland of rats exposed to total cranial irradiation // Head Neck. 2017. V. 39. № 10. P. 2027–2035. https://doi.org/10.1002/hed.24861
  11. Koc M., Deniz C., Eryilmaz M. et al. Radioprotective effects of melatonine and thymoquinone on liver, hfrotid gland, brain, and testis of rats exposed to total body irradiation // Turk. J. Med. Sci. 2023. V. 53. P. 902–908. https://doi.org/10.55730/1300-0144.5654
  12. Ahmed S., Bakz M. Will Nigella sativa oil protect parotil glands of rats against cranium gamma radiation? Histological and immunohistochemical evaluation // BMC Complement Med. Ther. 2024. V. 24. P. 111. https://doi.org/10.1186/s12906-024-04410-8
  13. Abdullaev S., Gubina N., Bulanova T. et al. Assessment of nuclear and mitochondrial DNA, expression of mitochondria-related genes in different brain regions in rats after whole-body X-ray irradiation // Int. J. Mol. Sci. 2020. V. 21. https://doi.org/10.3390/ijms21041196
  14. Abdullaev S.A., Glukhov S.I., Gaziev A.I. Radioprotective and radiomitigative effects of melatonin in tissues with different proliferative activity // Antioxidants (Basel). 2021. V. 10. https://doi.org/10.3390/antiox10121885
  15. Газиев А.И. Пути сохранения целостности митохондриальной ДНК и функций митохондрий в клетках, подвергшихся воздействию ионизирующей радиации // Радиац. биол. Радиоэкология. 2013. Т. 53. № 2. С. 117–136.
  16. Михайлов В.Ф., Салеева Д.В., Рождественский Л.М. и др. Активность генов и некодирующих РНК как подход к определению ранних биомаркеров радиоиндуцированного опухолеобразования у мышей // Генетика. 2021. Т. 57. № 10. С. 1131–1140. https://doi.org/10.31857/S0016675821100076
  17. Long G., Chen H., Wu M. et al. Antianemia drug roxadustat (FG-4592) protects against doxorubicin-induced cardiotoxicity by targeting antiapoptotic and antioxidative pathways // Front. Pharmacol. 2020. V. 11. https://doi.org/10.3389/fphar.2020.01191
  18. Wang H., Yu W., Wang Y. et al. P53 contributes to cardiovascular diseases via mitochondria dysfunction: A new paradigm // Free Radic. Biol. Med. 2023. V. 208. P. 846–858. https://doi.org/10.1016/j.freeradbiomed.2023.09.036
  19. Alsanosi S., Sheikh R., Sonbul S. et al. The potential role of Nigella sativa seed oil as epigenetic therapy of cancer // Molecules. 2022. V. 27. https://doi.org/10.3390/molecules27092779
  20. Kaleem M., Kayali A., Sheikh R. et al. In vitro and in vivo preventive effects of thymoquinone against breast cancer-role of DNMT1 // Molecules. 2024. V. 29. P. 434.
  21. Салеева Д.В., Раева Н.Ф., Абдуллаев С.А. и др. Профилактический и терапевтический потенциал тимохинона при ряде патологий человека на основе определения активации клеточных компонентов, осуществляющих защитные функции по активности генов и некодирующих РНК // Госпитальная медицина: наука и практика, 2023. T. 6. № 2. C. 27–36. https://doi.org/10.34852/GM3CVKG.2023.75.38.015

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Effect of TX on the expression of oncogenes (IAP-1, IkBa, NFKB (p50), iNOS) in the tissues of the spleen and brain of mice 6 and 24 hours after exposure to X-ray radiation at a dose of 6 Grams. The level of gene expression in unirradiated (control) mice was assumed to be 100%. The data is presented as an average ± SEM of 5-6 independent experiments. The differences from the control are statistically significant at p < 0.05 (*).

Baixar (259KB)
3. 2. The effect of TC on the expression of mtDNA genes involved in oxidative phosphorylation (ND2, CYT-B, ATP6) in the tissues of the spleen and brain of mice, 6 and 24 hours after exposure to X-ray radiation at a dose of 6 Grams. The level of gene expression in unirradiated (control) mice was assumed to be 100%. The data is presented as an average ± SEM of 5-6 independent experiments. The differences from the control are statistically significant at p < 0.05 (*), p < 0.01 (**).

Baixar (306KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025