On the optimal control function diagrams in the problem of the movement of a platform with oscillators

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the problem of the time-optimal movement of a rigid body moving translationally along a horizontal straight line and carrying n-linear oscillators. The only control force is applied to the platform and is limited in magnitude, there is no friction. The system is transferred from a state of rest to a specified distance with vibration damping. The evolution of optimal control functions depending on the distance of movement is investigated. A general approach to constructing a visual diagram reflecting such evolution is proposed. To do this, a geometric interpretation of the necessary optimality conditions is used as properties of an auxiliary “control” curve in n-dimensional space. Numerical examples of constructing diagrams of optimal control functions for a platform with three oscillators are given.

Texto integral

Acesso é fechado

Sobre autores

O. Kayumov

Branch of Omsk State Pedagogical University

Autor responsável pela correspondência
Email: Oleg_Kayumov@mail.ru
Rússia, Tara

Bibliografia

  1. Черноусько Ф.Л., Акуленко Л.Д., Соколов Б.Н. Управление колебаниями. М.: Наука, 1980. 383 с.
  2. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1969. 384 с.
  3. Мамалыга В.М. Об оптимальном управлении одной колебательной системой // Изв. АН СССР. МТТ. 1978. № 3. С. 8–17.
  4. Каюмов О.Р. О глобальной управляемости некоторых лагранжевых систем // Изв. АН СССР. МТТ. 1986. № 6. С. 16–23.
  5. Овсеевич А.И., Федоров А.К. Асимптотически оптимальное управление в форме синтеза для системы линейных осцилляторов // ДАН. 2013. Т. 452. № 3. С. 266–270.
  6. Ананьевский И.М., Анохин Н.В., Овсеевич А.И. Синтез ограниченного управления линейными динамическими системами с помощью общей функции Ляпунова // ДАН. 2010. Т. 434. № 3. С. 319–323.
  7. Ovseevich A.A. Local Feedback Control Bringing a Linear System to Equilibrium // JOTA. 2015. V. 165. № 2. P. 532–544.
  8. Ананьевский И.М., Ишханян Т.А. Управление твердым телом, несущим диссипативные осцилляторы, в присутствии возмущений // Изв. РАН. ТиСУ. 2019. № 1. С. 42–51.
  9. Ананьевский И.М. Управляемое перемещение платформы, несущей упругое звено с неизвестным фазовым состоянием // Изв. РАН. ТиСУ. 2019. № 6. С. 35–42.
  10. Ананьевский И.М., Овсеевич А.И. Управляемое перемещение линейной цепочки осцилляторов // Изв. РАН. ТиСУ. 2021. № 5. С. 18–26.
  11. Каюмов О.Р. Оптимальное по быстродействию перемещение платформы с осцилляторами // ПММ. 2021. Т.85. Вып. 6. С. 699–718.
  12. Каюмов О.Р. Диаграммы функций оптимального управления в задаче наибыстрейшего перемещения платформы с двумя осцилляторами // Изв. РАН. ТиСУ. 2022. № 5. С. 66–83.
  13. Kayumov O.R. On the Properties of the Time-Optimal Movement of a Platform with Oscillators // Proceedings of 16th Intern. Conf. on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference), STAB 2022. Moscow, 2022. C. 9807541.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Figure 1. Model of the platform with oscillators

Baixar (38KB)
3. Figure 2. Control curve in the case at

Baixar (41KB)
4. Figure 3. Control curve in the case at

Baixar (46KB)
5. Figure 4. Control curve in the case at

Baixar (53KB)
6. Figure 5. Diagram of optimal control functions in the case when

Baixar (37KB)
7. Figure 6. Graph of the function in the case when

Baixar (15KB)
8. Figure 7. Right (mirror) part of the diagram for at , ,

Baixar (42KB)
9. Figure 8. Right (mirror) part of the diagram for at

Baixar (51KB)
10. Figure 9. Right (mirror) part of the diagram for at

Baixar (69KB)
11. Figure 10. Range dependence on time for different combinations of parameters

Baixar (43KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024