Matrix Sylvester equation in problem of direct design of stabilizing feedback of linear discrete-time stationary system on basis of data on its states

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents a solution to the problem of designing a stabilizing state feedback for a linear multivariable discrete-time stationary system based on data of the system's behavior. It is assumed that the system matrices are unknown. An algorithm for directly designing a feedback matrix based on the Sylvester matrix equation without solving the identification problem is considered. Conditions for the existence of a solution to the design problem are obtained. A numerical example is considered.

About the authors

E. A. Perepelkin

Saint-Petersburg State University of Aerospace Instrumentation

Author for correspondence.
Email: perepelkin@guap.ru
Russian Federation, Saint-Petersburg

References

  1. Hou Z.S., Wang Z. From Model-Based Control To Data-Driven Control: Survey. Classification and Perspective // Information Sciences. 2013. V. 235. P. 3–35.
  2. Bazanella A.S., Campestrini C., Eckhard D. The Data-Driven Approach To Classical Control Theory // Annual Reviews in Control. 2023. V. 56. Article 100906.
  3. Waarde H.J., Eising J., Trentelman H.L., Camlibel M.K. Data Informativity: A New Perspective on Data-Driven Analysis and Control // IEEE Transactions on Automatic Control. 2020. V. 65. № 11. P. 4753–4768.
  4. Khaki-Sedigh A. An Introduction to Data-Driven Control Systems. John Wiley & Sons, 2023.
  5. Novara C., Formentin S. Data-Driven Modeling, Filtering and Control: Methods and Applications. London: IET, 2023.
  6. Dai T., Sznaier M. Data-driven Quadratic Stabilization and LQR Control of LTI Systems // Automatica. 2023. V. 153. Article 111041.
  7. Pellegrino F., Blanchini F., Fenu G., Salvato E. Data-Driven Dynamic Relatively Optimal Control // European Journal of Control. 2023. V. 74. Article 100839.
  8. Kоган М.М., Степанов А.В. Синтез субоптимальных робастных регуляторов на основе априорных и экспериментальных данных // А и Т. 2023. № 8. С. 24–42.
  9. Kоган М.М., Степанов А.В. Синтез обобщенного -субоптимального управления по экспериментальным и априорным данным // А и Т. 2024. № 1. С. 3–20.
  10. Дмитрук Н.М., Манжулина Е.А. Оптимальное управление линейными стационарными дискретными системами без предварительной параметрической идентификации // А и Т. 2022. № 2. С. 3–21.
  11. Verheijen P.C.N., Breschi V., Lazar M. Handbook of Linear Data-driven Predictive Control: Theory, Implementation and Design // Annual Reviews in Control. 2023. V. 56. 2023. Article 100914.
  12. Berberich J., Köhler J., Müller M.A., Allgöwer F. Data-Driven Model Predictive Control With Stability and Robustness Guarantees // IEEE Transactions on Automatic Control. 2021. V. 66. № 4. P. 1702–1717.
  13. Mukherjee S., Hossain R.R. Data-Driven Pole Placement in LMI Regions with Robustness Guarantees // IEEE61st Conf. on Decision and Control (CDC). Cancun, Mexico, 2022. P. 4010–4015.
  14. Persis C., Tesi P. Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness // IEEE Transactions on Automatic Control. 2020. V. 65. № 3. P. 909–924.
  15. Baggio G, Bassett D.S., Pasqualetti F. Data-Driven Control of Complex Networks // Nat. Commun. 2021. V. 12. Article 1429.
  16. Martin T., Schön T.B., Allgöwer F. Guarantees for Data-driven Control of Nonlinear Systems Using Semidefinite Programming: A Survey // Annual Reviews in Contro. 2023. V. 56. Article 100911.
  17. Strässer R., Berberich J., Allgöwer F. Robust Data-Driven Control for Nonlinear Systems Using the Koopman Operator // IFAC-PapersOnLine. 2023. V. 56. № 2. P. 2257–2262.
  18. Rueda-Escobedo J.G., Fridman E., Schiffer J. Data-Driven Control for Linear Discrete-Time Delay Systems // IEEE Transactions on Automatic Control. 2022. V. 67. № 7. P. 3321–3336.
  19. Kуо Б. Теория и проектирование цифровых систем управления. М.: Машиностроение, 1986.
  20. Гантмахер Ф.Р. Теория матриц. М.: Физматлит, 2010.
  21. Hearon J.Z. Nonsingular Solution of TA-BT+C // Linear Algebra and Its Applications. 1977. V. 16. P. 57–63.
  22. Souza E. Controllability, Observability and the Solution AX–XB=C // Linear Algebra and Its Applications. 1981. V. 39. P. 167–188.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences