Автоматизация подготовки данных для систем видеонаблюдения в производстве

В.А. Зотов

Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

Обоснование. В условиях цифровой трансформации экономики автоматизация контроля качества и управление производственными процессами становятся ключевыми аспектами конкурентоспособности предприятий. Для этого используются современные технологии, такие как ЧПУ и алгоритмы машинного обучения. MDC- и MES-системы интегрируются с производственной инфраструктурой для мониторинга и оптимизации процессов. Глубокие нейронные сети, такие как YOLO, эффективно детектируют объекты и анализируют данные, особенно в условиях многономенклатурного производства [1, 2].

Цель — разработать приложение для автоматизации разметки видеоматериалов в условиях ограниченного производства и широкой номенклатуры для обучения нейронных сетей в системах компьютерного зрения.

Методы. При разработке приложения использовались две нейронные сети, работающие последовательно в рамках одного алгоритма: YOLOv5 для детектирования ячеек тары, в которой перемещаются детали в производстве, и VGG19 для классификации деталей внутри ранее детектированных ячеек. Такой подход позволяет снизить ошибки второго рода и повысить значение mAP, но увеличивает время обучения практически в четыре раза. Эксперименты проводились с деталями в таре с обрешеткой: каждая ячейка содержала одну деталь или ничего. На углах тары нанесены ArUco-маркеры и QR-коды для активации нужных нейронных сетей, обученной под конкретную тару и типы деталей. Задачами приложения являлись: выделение и классификация пустых или заполненных ячеек, определение типа детали и детектирование QR- и ArUco-кодов [3, 4].

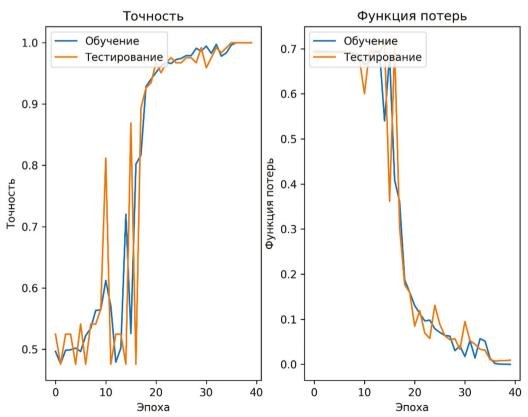


Рис. 1. График точности и функции потерь

Результаты. На начальном этапе экспериментов были исследованы различные варианты обучения, отличающиеся входным набором параметров. В рамках исследования изучалось влияние типа изображения (цветное или серое) на эффективность процесса обучения. Было установлено, что цветное изображение благоприятнее для обучения. Были рассмотрены два вида оптимизаторов SGD [5] и Adam [6], а также различные размеры батча и количества эпох. Оптимальными выбраны параметры: Оптимизатор — SGD, размер батча 2—16, количество эпох 20—100. Данный этап позволил сократить варьируемые параметры в два раза.

Дальнейшие изыскания были направлены на поиск оптимальных параметров обучения нейронной сети. Наилучшие результаты дал размер батча 8 и количество эпох 40. Сбалансированность количества изображений двух классов также влияет на точность, а кроме того, размер обучающей выборки желательно не ниже 1100 изображений. График точности и функции потерь детали № 5, для которой эти параметры на тестовой выборке достигли лучших значений, представлен на рис. 1.

Выводы. Разработанное приложение для разметки видеоматериала упрощает обучение нейронных сетей, используя предварительно обученные модели, требующие увеличения выборки. Хотя применение трех сетей YOLO и одной VGG замедляет обработку, это быстрее, чем ручная разметка, что важно для серийного многономенклатурного производства. Подобные приложения позволят приблизить переход к Индустрии 4.0 и в целом повысить экономическую эффективность на отечественных машиностроительных предприятиях.

Работа выполнена по проекту FSSS-2024-0019, реализуемому в рамках федерального проекта «Развитие человеческого капитала в интересах регионов, отраслей и сектора исследований и разработок». Результат — создание новых лабораторий, в том числе под руководством молодых перспективных исследователей.

Ключевые слова: управление производственными процессами; компьютерное зрение; нейронная сеть; MDC-система; детектирование объектов.

Список литературы

- 1. Zakharov O.V., Lysenko V.G., Ivanova T.N. Asymmetric morphological filter for roughness evaluation of multifunctional surfaces // ISA Transactions. 2024. Vol. 146. P. 403–420. doi: 10.1016/j.isatra.2023.12.016 EDN: WIBCLQ
- 2. van Mourik S., van der Tol R., Linker R., et al. Introductory overview: Systems and control methods for operational management support in agricultural production systems // Environmental Modelling & Software. 2021. Vol. 139. P. 105031. doi: 10.1016/j.envsoft.2021.105031 EDN: UPFGTQ
- 3. Zagitov A., Chebotareva E., Toschev A., Magid E. Comparative analysis of neural network models performance on low-power devices for a real-time object detection task // Computer Optics. 2024. Vol. 48, N 2. P. 242–252. doi: 10.18287/2412-6179-CO-1343 EDN: RDQVQY
- Bhuma C.M., Kongara R. A novel technique for image retrieval based on concatenated features extracted from big dataset pretrained CNNs // International Journal of Image, Graphics and Signal Processing. 2023. Vol. 2. P. 1–12. doi: 10.5815/ijigsp.2023.02.01 EDN: FGDWXK
- 5. Bottou L., Bousquet O. The Tradeoffs of Large Scale Learning // Optimization for Machine Learning / ed. by S. Sra, S. Nowozin, S.J. Wright. Cambridge: MIT Press, 2012. P. 351-368. ISBN 978-0-262-01646-9
- 6. Kingma D., Ba J. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs.LG]. 2014.

Сведения об авторе:

Владислав Александрович Зотов — студент, группа 3413-240305D, институт двигателей и энергетических установок; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: vlad198189@gmail.com

Сведения о научном руководителе:

Вадим Андреевич Печенин — кандидат технических наук, доцент, заведующий лабораторией НИЛ-211, доцент кафедры технологий производства двигателей; Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия. E-mail: pechenin.va@ssau.ru