Концепция «химического» топологического типа: моделирование разупорядочения в многокомпонентных и высокоэнтропийных сплавах

П.Д. Мартынова

Самарский государственный технический университет, Самара, Россия

Обоснование. Современные условия требуют от исследователей поиска эффективных методов, способных решить проблемы, связанные с прогнозированием разнообразных многокомпонентных сплавов. Растущий интерес исследователей к новым сплавам объясняется широким спектром применения в повседневной жизни в качестве функциональных и конструкционных материалов, а также распространенностью металлов в периодической системе Менделеева. Традиционные интуитивные подходы не позволяют охватить все возможные комбинации металлов, а также требуют значительных затрат времени и ресурсов. Эффективным решением данной задачи является использование компьютерного моделирования и методов машинного обучения, которые лишены таких недостатков, а также обеспечивают более точные и надежные прогнозы. В то же время моделирование многокомпонентных сплавов с помощью методов функционала плотности (DFT) [1] сталкивается с необходимостью учитывать множество конфигураций, многие из которых могут обладать одинаковой энергией. Этот фактор затрудняет процесс ускоренного прогнозирования новых сплавов.

Цель — разработка и внедрение концепции «химического» топологического типа для оптимизации процесса моделирования позиционного разупорядочения атомов в структурах с целью сокращения вычислительных затрат при использовании методов DFT для моделирования сплавов.

Методы. В данной работе для решения поставленной задачи был применен топологический подход, который мы расширили за счет введения концепции «цвета» атома. Метод был реализован в программном комплексе ToposPro версии 5.5.2.1 [2]. Алгоритм заключается в анализе окружения каждого типа атомов в пределах первых десяти координационных сфер с целью выявления различий в распределении атомов. Такое окружение характеризуется луковичным кластером, который формируется путем последовательного наращивания координационных оболочек вокруг конкретного металлического центра. Подобное рассмотрение сходно с нанокластерной моделью [3]. В рамках предложенной концепции «цвет» каждого атома строго соответствует его химическому сорту, что позволяет различать конфигурации вещества одного и того же химического состава.

Результаты. В рамках предложенного подхода сокращение количества рассматриваемых конфигураций происходит за счет того, что физически эквивалентные конфигурации будут относится к одному «химическому» топологическому типу. В качестве примера мы использовали программный комплекс ToposPro для генерации всех низкосимметричных копий сетки бинарного сплава с топологией fcu (ГЦК) и с соотношением атомов 5:3. Были сгенерированы все суперъячейки, содержащие 8 независимых атомов. В результате были получены 952 конфигурации. Применив предложенный метод, мы получили 35 «химических» топологических типов, которые следует рассматривать далее при моделировании данного сплава методами DFT. Таким образом, в данном случае применение предложенного метода позволило сократить число конфигураций в 27 раз.

Одним из частных случаев данной задачи является моделирование высокоэнтропийных сплавов (ВЭС) [4, 5]. В классической модели ВЭС содержится пять и более компонентов в равных пропорциях, а атомы распределены по кристаллической структуре с одинаковой вероятностью. Это приводит к большому количеству возможных конфигураций. Мы сгенерировали все низкосимметричные копии fcu (ГЦК) сетки с 2, 3, 4 или 5 неэквивалентными узлами. В результате количество конфигураций с различными окружениями атомов оказалось значительно меньше общего числа, что в свою очередь позволит существенно сократить объем последующего моделирования сплавов методами DFT (рис. 1).

Рис. 1. Сгенерированные многокомпонентные эквиатомные сплавы, относящиеся топологическому типу fcu. Зеленым цветом показано количество «химических» топологических типов

Выводы. Предложенный метод позволит увеличить эффективность и сократить вычислительные затраты при моделировании многокомпонентных сплавов с помощью DFT методов.

Ключевые слова: «химический» топологический тип; топологический анализ; кристаллография; много-компонентные сплавы; высокоэнтропийные сплавы.

Список литературы

- 1. Argaman N., Makov G. Density functional theory: An introduction // American Journal of Physics. 2000. Vol. 68, N 1. P. 69–79. doi: 10.1119/1.19375
- 2. topo.spro.com [Электронный ресурс] Система для геометрического и топологического анализа кристаллических структур. Режим доступа: https://topospro.com Дата обращения: 01.07.2024.
- 3. Pankova A.A., Blatov V.A., Ilyushin G.D. et al. γ-Brass polyhedral core in intermetallics: The nanocluster model // Inorganic Chemistry. 2013. Vol. 52, N 22. P. 13094–13107. doi: 10.1021/ic401912d EDN: SLBAXL
- 4. Ye Y.F., Wang Q., Lu J. et al. High-entropy alloy: challenges and prospects // Materials Today. 2016. Vol. 19, N 6. P. 349–362. doi: 10.1016/j.mattod.2015.11.026 EDN: XPTEIP
- George E.P., Raabe D., Ritchie R.O. High-entropy alloys // Nature Reviews Materials. 2019. Vol. 4, N 8. P. 515–534. doi: 10.1038/s41578-019-0121-4 EDN: FZNZWX

Сведения об авторе:

Полина Дмитриевна Мартынова — студентка, группа 3-ХТФ-106, химико-технологический факультет; Самарский государственный технический университет, Самара, Россия. E-mail: polinamartd@yandex.ru

Сведения о научном руководителе:

Владислав Анатольевич Блатов — доктор химических наук, профессор; Самарский государственный технический университет, Самара, Россия. E-mail: blatov@topospro.com