Тоиск перспективных ионных проводников методами теоретического материаловедения

В.Т. Осипов

Самарский государственный технический университет, Самара, Россия

Обоснование. Возникновение эры мобильной электроники и «интернета вещей» обусловлено созданием литий-ионных аккумуляторов (ЛИА), обладающих высокой удельной плотностью хранения энергии и долговечностью. Также ЛИА активно используются в электромобилях и системах хранения энергии. Однако у ЛИА есть ряд недостатков:

- 1) высокая стоимость из-за использования дорогого сырья, которое мало распространено в земной коре (литий, кобальт);
 - 2) пожароопасность ввиду использования горючего электролита.

Решением указанных проблем является дальнейшее развитие литиевых технологий путем использования твердых электролитов (ТЭ) [1] либо переход к новым типам металл-ионных аккумуляторов (пост-литиевые технологии). При этом развитие технологий ЛИА остается приоритетом современной электрохимии. Перспективными пост-литиевыми технологиями являются аккумуляторы с высоковалентными рабочими ионами Zn^{2+} , Mg^{2+} и Al^{3+} .

Цель — методами современного теоретического материаловедения исследовать потенциальные твердые электролиты на основе нитритов щелочных металлов $MeNO_2$ (Me = Li, Na, K, Rb, Cs) и осуществить поиск новых высоковалентных ионных проводников среди халькоген-содержащих соединений.

Методы. С помощью расчетов в рамках теории функционала плотности (ТФП) [2, 3], реализованных в программе VASP [4], на первом этапе была проведена релаксация исходных структур $MeNO_2$ (Me = Li, Na, K, Rb, Cs) [5], взятых из базы данных ICSD. Затем методом упругой эластичной ленты (англ. NEB) были определены энергетические барьеры (E_m) для возможных путей миграции ионов металлов в структурах. Была выполнена ab initio молекулярная динамика (AIMD) для потенциальных Zn- и Al-ионных проводников среди халькоген-содержащих соединений. На основе AIMD расчетов вычислены коэффициенты диффузии (D) и проводимость (σ) в проводниках.

Результаты. Во всех нитритах реализуется трехмерная карта миграции рабочих катионов с $E_m < 1$ эВ, что говорит о вероятной подвижности ионов Ме в структурах. Нитриты лития и цезия обладают самой низкой E_m среди всех рассмотренных нитритов — 0,51 эВ. Все полученные расчетные данные показаны в таблице 1. Методами AIMD (рис. 1) выявлено девять перспективных ионных проводников с высоковалентными рабочими ионами Zn^{2+} и Al^{3+} со структурным типом La_3CuSiS_7 , для которых значения проводимости достигают 10^{-2} См/см.

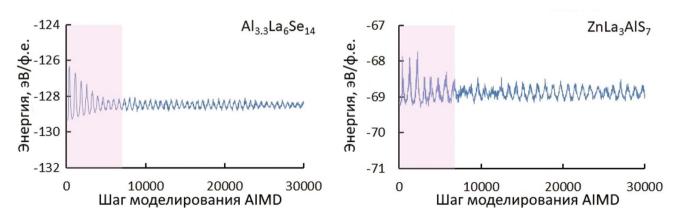


Рис. 1. Изменение полной энергии структур типа La₃CuSiS₇ в зависимости от номера шага AIMD моделирования при 300 К

Таблица 1. Результаты ТФП расчетов для нитритов щелочных металлов

Koд ICSD#	Соединение	Группа симметрии	<i>Е_т,</i> эВ
37180	LiNO ₂ ·H ₂ O	P12 ₁ /c1	0,51
43485	NaNO ₂	lm2m	0,75
86118	KNO ₂	R-3m	0,58
*	RbNO ₂	R-3m	0,72
40832 (00)	CsNO ₂	Pm-3m	0,51
40832 (01)	CsNO ₂	Pm-3m	0,64

^{* —} RbNO₂ изоструктурен соединению KNO₂.

Выводы. Нитриты щелочных металлов в рамках метода упругой эластичной ленты показывают низкие энергетические барьеры, что делает их хорошими кандидатами для использования их в качестве ТЭ в металл-ионных аккумуляторах с щелочными металлами. Обнаружены новые высоковалентные ионные проводники структурного типа La_3 CuSiS₇ по данным AIMD.

Ключевые слова: металл-ионный аккумулятор; твердый электролит; теория функционала плотности; нитриты.

Список литературы

- 1. Осипов В.Т., Гонгола М.И., Морхова Е.А., и др. Машинное обучение как инструмент ускорения поиска новых материалов для металл-ионных аккумуляторов // Доклады Российской академии наук. Математика, информатика, процессы управления. 2023. Т. 514, № 2. С. 355—363. EDN: CXJJLK doi: 10.31857/S2686954323601033
- 2. Hohenberg P., Kohn W. Inhomogeneous electron gas // Phys Rev. 1964. Vol. 136, N 3B. ID B864. doi: 10.1103/PhysRev.136.B864
- 3. Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects // Phys Rev. 1965. Vol. 140, N 4A. ID A1133. doi: 10.1103/PhysRev.140.A1133
- 4. Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys Rev B. 1996. Vol. 54, N 16. ID 11169. doi: 10.1103/PhysRevB.54.11169
- 5. Mateyshina Y., Uvarov N. Ionic conductivity of alkali nitrites // Solid State Ion. 2017. Vol. 302. P. 77-82. doi: 10.1016/j.ssi.2016.11.023

Сведения об авторе:

Владислав Тимофеевич Осипов — студент, группа 2-ХТФ-106M, химико-технологический факультет; Самарский государственный технический университет, Самара, Россия. E-mail: vld.ospv@gmail.com

Сведения о научном руководителе:

Артем Анатольевич Кабанов — кандидат физико-математических наук, доцент; Самарский государственный технический университет, Самара, Россия. E-mail: artkabanov@mail.ru