Двумерные самозаклинивающиеся структуры в трехмерном пространстве

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Известно, что если на плоскости имеется конечный набор выпуклых фигур, внутренности которых не пересекаются, то среди этих фигур имеется хотя бы одна крайняя – такая, которую можно непрерывно передвинуть “на бесконечность” (за пределы большого круга, содержащего остальные фигуры), оставляя все остальные фигуры неподвижными и не пересекая их внутренности в процессе движения.

Было обнаружено, что в пространстве размерности три имеет место феномен самозаклинивающихся структур. Самозаклинивающаяся структура – это такой конечный (или бесконечный) набор выпуклых тел с непересекающимися внутренностями, что если зафиксировать все, кроме любого одного, то это тело нельзя “унести на бесконечность”.

С давних пор имеющиеся структуры базируются на рассмотрении слоев из кубов, тетраэдров и октаэдров, а также их вариаций.

В данной работе мы рассматриваем принципиально новый феномен двумерных самозаклинивающихся структур: набор двумерных многоугольников в трехмерном пространстве, где каждую многоугольную плитку нельзя унести на бесконечность. Из тонких плиток собираются самозаклиненные декаэдры, из которых, в свою очередь, собираются структуры второго порядка. В частности, приводится конструкция колонны, составленной из декаэдров, устойчивой при фиксации двух крайних декаэдров, а не всей границы слоя, как в структурах, исследованных ранее.

Об авторах

В. О. Мантуров

Московский физико-технический институт; Казанский федеральный университет; Северо-Восточный университет

Автор, ответственный за переписку.
Email: vomanturov@yandex.ru
Россия, Москва; Казань; Шэньян, Китай

А. Я. Канель-Белов

Московский физико-технический институт; Университет им. Бар-Илана; Магнитогорский государственный технический университет им. Г.И. Носова

Email: kanelster@gmail.com
Россия, Москва; Рамат-Ган, Израиль; Магнитогорск

С. Ким

Цзилиньский университет

Email: kimseongjeong@jlu.edu.cn
Китай, Чанчунь

Ф. К. Нилов

Московский физико-технический институт; Московский государственный университет им. М.В. Ломоносова

Email: nilovfk@gmail.com
Россия, Москва; Москва

Список литературы

  1. Kanel-Belov A.J., Dyski A.V., Estrin Y., Pasternak E., Ivanov I.A. Interlocking of convex polyhedra: towards a geometric theory of fragmented solids. Moscow Mathematical Journal, 2010. arXiv:0812.5089v1.
  2. Канель-Белов А.Я. Самозаклинивающиеся структуры // Квант. Физико-математический журнал для школьников и студентов. Январь–февраль 2009. Т. 1. С. 20–23.
  3. Djumas L., Simon G.P., Estrin Y. et al. Deformation mechanics of non-planar topologically interlocked assemblies with structural hierarchy and varying geometry // Nature. Sci Rep 7. 2017. P. 11844. https://doi.org/10.1038/s41598-017-12147-3
  4. Khandelwal S., Siegmund T., Cipra R.J., Bolton J.S. Transverse Loading of Cellular Topologically Interlocked Materials // Int. J. Solids Struct. 2012. Vol. 49. No. 18. P. 2394–2403.
  5. Khandelwal S., Cipra R.J., Bolton J.S., Siegmund T. Adaptive Mechanical Properties of Topologically Interlocking Material Systems // Smart Mater. Struct. 2015. Vol. 24. No. 4. P. 045037.
  6. Feng Y., Siegmund T., Habtour E., Riddick J. Impact mechanics of topologically interlocked material assemblies // Intl. J. Impact Eng. 2015. Vol. 75. P. 140–149.
  7. Siegmund T., Barthelat F., Cipra R.J., Habtour E., Riddick J. Manufacture and Mechanics of Topologically Interlocked Material Assemblies // Applied Mechanics Reviews. 2016. Vol. 68.No. 4. P. 041401–1.
  8. Mather A., Cipra R.J., Siegmund T. Structural Integrity During Remanufacture of a Topologically Interlocked Material // Int. J. Struct. Integr. 2012. Vol. 3. No. 1. P. 61–78.
  9. Bayer J., Benzmúller C., Buzzard K., David M., Lamport L., Matiyasevich Y., Paulson L., Schleicher D., Stock B., Zelmanov E. Mathematical proof between generations. arXiv:2207.04779.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024