ФОТОЧУВСТВИТЕЛЬНОСТЬ НАНОСТРУКТУР С ЭНЕРГЕТИЧЕСКИМ БАРЬЕРОМ НА ОСНОВЕ КОЛЛОИДНЫХ КВАНТОВЫХ ТОЧЕК PbS
- Авторы: Попов В.С.1,2, Иванов В.В.2, Арсенов П.В.2, Кацаба А.В.2, Мирофянченко Е.В.1, Мирофянченко А.Е.1, Гак В.Ю.2,3, Лаврентьев Н.А.1,2, Бричкин С.Б.2,3, Гадомская А.В.2,3, Шуклов И.А.2, Демкин Д.В.2, Пономаренко В.П.1,2, Разумов В.Ф.2,3
 - 
							Учреждения: 
							
- Государственный научный центр РФ АО “НПО “Орион”
 - Московский физико-технический институт (национальный исследовательский университет)
 - Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук
 
 - Выпуск: Том 511, № 1 (2023)
 - Страницы: 78-82
 - Раздел: ТЕХНИЧЕСКИЕ НАУКИ
 - URL: https://vietnamjournal.ru/2686-7400/article/view/651859
 - DOI: https://doi.org/10.31857/S2686740023040120
 - EDN: https://elibrary.ru/UMQVYU
 - ID: 651859
 
Цитировать
Полный текст
Аннотация
Предложена новая архитектура фоточувствительных элементов для ближней (0.7–1.4 мкм) и коротковолновой (1.4–3.0 мкм) инфракрасных областей спектра на основе гибридных наноструктур, состоящих из коллоидных квантовых точек PbS и функциональных слоев из ZnO и серебряных нанонитей AgNW. Исследованы малоразмерные (12 × 12 мкм) фоточувствительные элементы с энергетическим барьером на контакте слоев ККТ n- и p-типов проводимости. Исследованы вольт-амперные характеристики, спектральные зависимости оптического поглощения и относительной спектральной фоточувствительности Si(λ)/Si(λmax) барьерных структур при комнатной температуре. Показано, что предложенная архитектура барьерных структур обеспечивает фоточувствительность в широком спектральном диапазоне от 0.4 до 2.0 мкм. Обнаружено превышение среднего значения относительной спектральной чувствительности Si(λ)/Si(λmax) в 1.5 раза по сравнению с ранее наблюдавшимися в интервале длин волн 0.9–1.85 мкм для барьерных наноструктур из ККТ PbS.
Ключевые слова
Об авторах
В. С. Попов
Государственный научный центр РФАО “НПО “Орион”; Московский физико-технический институт (национальный исследовательский университет)
							Автор, ответственный за переписку.
							Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Москва; Россия, Московская обл., Долгопрудный						
В. В. Иванов
Московский физико-технический институт (национальный исследовательский университет)
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Московская обл., Долгопрудный						
П. В. Арсенов
Московский физико-технический институт (национальный исследовательский университет)
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Московская обл., Долгопрудный						
А. В. Кацаба
Московский физико-технический институт (национальный исследовательский университет)
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Московская обл., Долгопрудный						
Е. В. Мирофянченко
Государственный научный центр РФАО “НПО “Орион”
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Москва						
А. Е. Мирофянченко
Государственный научный центр РФАО “НПО “Орион”
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Москва						
В. Ю. Гак
Московский физико-технический институт (национальный исследовательский университет); Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Московская обл., Долгопрудный; Россия, Московская обл., Черноголовка						
Н. А. Лаврентьев
Государственный научный центр РФАО “НПО “Орион”; Московский физико-технический институт (национальный исследовательский университет)
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Москва; Россия, Московская обл., Долгопрудный						
С. Б. Бричкин
Московский физико-технический институт (национальный исследовательский университет); Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Московская обл., Долгопрудный; Россия, Московская обл., Черноголовка						
А. В. Гадомская
Московский физико-технический институт (национальный исследовательский университет); Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Московская обл., Долгопрудный; Россия, Московская обл., Черноголовка						
И. А. Шуклов
Московский физико-технический институт (национальный исследовательский университет)
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Московская обл., Долгопрудный						
Д. В. Демкин
Московский физико-технический институт (национальный исследовательский университет)
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Московская обл., Долгопрудный						
В. П. Пономаренко
Государственный научный центр РФАО “НПО “Орион”; Московский физико-технический институт (национальный исследовательский университет)
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Москва; Россия, Московская обл., Долгопрудный						
В. Ф. Разумов
Московский физико-технический институт (национальный исследовательский университет); Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук
														Email: popov.vs@mipt.ru
				                					                																			                												                								Россия, Московская обл., Долгопрудный; Россия, Московская обл., Черноголовка						
Список литературы
- Zandian M., Farris M., McLevige W. et al. Performance of Science Grade HgCdTe H4RG-15 Image Sensors // Proc. of SPIE. 2016. 9915, 99150F1. https://doi.org/10.1117/12.2233664
 - Zhang J.-X., Wang W., Li Z.-B.et al. Development of a High Performance 1280 × 1024 InGaAs SWIR FPA Detector at Room Temperature // Front Phys. 2021. V. 9. 678192. https://doi.org/10.3389/fphy.2021.678192
 - Thom R. High density infrared detector arrays // Patent US 4039833. 1977.
 - Шуклов И.А., Разумов В.Ф. Коллоидные квантовые точки халькогенидов свинца для фотоэлектрических устройств // Успехи химии. 2020. Т. 89. № 3. С. 379–391. https://doi.org/10.1070/RCR4917
 - Gregory C., Hilton A., Violette K. et al. Colloidal quantum dot sensor bandwidth and thermal stability: progress and outlook // Proc. of SPIE. 2022. 12107, 1210705. https://doi.org/10.1117/12.2618320
 - Yuan Y., Xu J.-L., Zhang J.-Y. et al. Interface Engineering for High Photoresponse in PbS Quantum-Dot Short-Wavelength Infrared Photodiodes // IEEE Electron Device Letters. 2022.V. 43. P. 1275–1278. https://doi.org/10.1109/LED.2022.3183602
 - Pejovic V., Georgitzikis E., Lee J. et al. Infrared Colloidal Quantum Dot Image Sensors // IEEE Transactions on Electron Device. 2021. V. 69. P. 2840–2850. https://doi.org/10.1109/TED.2021.3133191
 - Попов В.С., Пономаренко В.П., Попов С.В. Фото- и наноэлектроника на основе двумерных 2D-материалов (обзор). Ч. III. Фотосенсоры на основе графена, графеноподобных и родственных моноатомных 2D-наноматериалов // Успехи прикладной физики. 2022. Т. 10. № 2. С. 144–169. https://doi.org/10.51368/2307-4469-2022-10-2-144-169
 - Пономаренко В.П., Попов В.С., Попов С.В. Фотоэлектроника на основе квазинульмерных структур (обзор) // Успехи прикладной физики. 2021. Т. 9. № 1. С. 25–67. https://doi.org/10.51368/2307-4469-2021-9-1-25-67
 - Brittman S., Colbert A.E., Brintlinger T.H. et al. Effects of a Lead Chloride Shell on Lead Sulfide Quantum Dots // J. Phys. Chem. Lett. 2019. V. 10. P. 1914–1918. https://doi.org/10.1021/acs.jpclett.9b00786
 - Mayer R. Elemental Sulfur and its Reactions. Organic Chemistry of Sulfur / Ed. S. Oae. Springer-Verlag, 1977. P. 33–69.
 - Beek W.J.E., Wienk M.M., Kemerink M. et al. Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells // J. Phys. Chem. B. 2005. V. 109. P. 9505–9516. https://doi.org/10.1021/jp050745x
 - Langley D., Giusti G., Mayousse C. et al. Flexible transparent conductive materials based on silver nanowire networks: a review // Nanotechnology. 2013. V. 24. 452001 (20 p.) https://doi.org/10.1088/0957-4484/24/45/452001
 - Kao K.C., Hwang W. (Electrical Transport in Solids. Oxford: Pergamon Press, 1981. 663 p.
 - Reich K.V. Conductivity of quantum dot arrays // Physics-Uspekhi. 2020. V. 63. P. 994–1084. https://doi.org/10.3367/UFNe.2019.08.038649
 - Klem E., Lewis J., Gregory C. et al. Room Temperature SWIR Sensing from Colloidal Quantum Dot Photodiode Arrays // Proc. of SPIE. 2013. 8704, 870436. https://doi.org/10.1117/12.2019521
 - Klem E.J.D., Lewis J., Gregory C. et al. Low Cost SWIR Sensors: Advancing the Performance of ROIC- Integrated Collodial Quantum Dot Photodiode Arrays // Proc. of SPIE. 2014. 9070, 907039. https://doi.org/10.1117/12.2054215
 - Klem E.J.D., Gregory C., Temple D. et al. PbS Colloidal Quantum Dot Photodiodes for Low-cost SWIR Sensing // Proc. of SPIE. 2015. 9451, 945104. https://doi.org/10.1117/12.2178532
 - Hinds S., Klem E., Gregory C. et al. Extended SWIR High Performance and High Definition Colloidal Quantum Dot Imagers // Proc. of SPIE. 2020. 11407, 1140707. https://doi.org/10.1117/12.2559115
 
Дополнительные файлы
				
			
						
						
						
					
						
									







