HOLOTHUROIDEA HAVE SPONGY BODIES HOMOLOGOUS TO SPONGY BODIES OF ECHINOIDEA AND TIEDEMANN’S BODIES OF ASTEROIDEA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the holothuroid Chiridota laevis (O. Fabricius, 1780), we have found the organs that can be considered as homologues of the spongy bodies of sea urchins and the Tiedemann’s bodies of sea stars. The spongy bodies of C. laevis are located in the interradii and are formed by outgrowths of coelomic canals that connect the water ring with the coelomic cavities of the tentacles. Haemocoelic lacunae are adjacent to the coelomic outgrowths. The spongy bodies of sea urchins and the Tiedemann’s bodies of sea stars are also located in the interradii and indicate the position of the reduced tentacles. We suggest that the spongy bodies of echinoderms function as excretory organs (additional kidneys). Since the water-vascular system of most holothuroids does not open outwards, the spongy bodies of holothuroids are much smaller than those of other echinoderms and can be considered as rudimentary organs.

About the authors

O. V Ezhova

Lomonosov Moscow State University

Email: olga_ejova@mail.ru
Biological Faculty

V. V Malakhov

Lomonosov Moscow State University

Academician of the RAS, Biological Faculty

References

  1. Иванова–Казас О.М. Сравнительная эмбриология беспозвоночных животных: Иглокожие и полухоровые. М.: Наука, 1978. 164 с.
  2. Perrier E. L’appareil circulatoire des oursins // Arch. Zool. Exp. Gén. 1875. Ser. 2. Vol. 4. P. 605–643.
  3. Hyman L.H. The Invertebrates. Vol. 4. Echinodermata. N.-Y.: McGraw-Hill Book Company. 1955. 550 p.
  4. Ezhova O.V., Malakhov V.V., Egorova E.A. Axial complex and associated structures of the sea urchin Stromgylocentrotus pallidus (Sars, G.O. 1871) (Echinodermata: Echinoidea) // Journal of Morphology. 2018. Vol. 279. No. 6. P. 792–808.
  5. Hayashi R. Anatomy of Henricia sanguinolenta // J. Fac. Sci. Hokkaido Univ. 1935. Ser. 6. Vol. 4. No. 4. P. 1–26.
  6. Cuénot L. Étude anatomique des astérides // Arch. Zool. Exp. Gén. 1887. Ser. 2. Vol. 5 (suppl.). P. 1–144.
  7. Remane A. Die Grundlagen des natürlichen Systems der vergleichenden Anatomie und der Phylogenetik. Leipzig, 1952. 400 s.
  8. Malakhov V.V., Gantsevich M.M. The origin and main trends in the evolution of bilaterally symmetrical animals // Paleontol. J. 2022. Vol. 56. P. 887–937.
  9. Malakhov V.V., Ezhova O.V. On the origin of tentacles and limbs in Deuterostomia // Russ. J. Mar. Biol. 2023. Vol. 49. Suppl. 1. P. 2–28.
  10. Welsch U., Rehkamper G. Podocytes in the axial organ of echinoderms // J. Zool. London. 1987. Vol. 213. P. 45–50.
  11. Ziegler A., Faber C., Bartolomeus T. Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea) // Front. Zool. 2009. Vol. 6. No. 10. P. 1–31.
  12. Ezhova O.V., Malakhov V.V. The axial complex of echinoderms represents the kidney and is homologous to the hemichordate heart-kidney // Paleontol. J. 2021. Vol. 55. No. 9. P. 1029–1038.
  13. Erber W. Der Steinkanal der Holothurien: Eine morphologische Studie zum Problem der Protocoleampulle // Zeitschrift für zoologische Systematik und Evolutionsforschung. 1983. Bd. 21. H. 3. S. 217–234.
  14. Lang A. Lehrbuch der Vergleichenden Anatomie. Jena: Verlag von Gustav Fisher. 1894. XVI + 1198 S.
  15. Lang A. Text-Book of Comparative Anatomy. Part II. London, New York: MacMillan and Co. 1896. XVI + 618 p.
  16. Smirnov A.V. Origin of the Class Holothuroidea // Paleontological Journal. 2021. Vol. 55. No. 7. P. 766–786.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences