Нейросети компьютерного зрения в системах поддержки принятия решений на умной ферме

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Создание умных ферм, в частности городских (city farm), в последние годы стало одной из тенденций развития как в агроинженерии, так и городском строительстве. Высокий уровень автоматизации существенно снижает степень участия человека в производственных процессах. В статье рассмотрены вопросы создания интеллектуальных систем поддержки принятия решений для умной сельскохозяйственной фермы, в которых искусственные нейронные сети (ИНС) компьютерного зрения используют для обработки результатов наблюдений и распознавания ситуаций, требующих вмешательства человека. На примере городской фермы для выращивания земляники сформулирован ряд прикладных задач (обнаружение плодов с классификацией по степени зрелости, диагностика болезней, выявление столонов). Приведены результаты экспериментального исследования ИНС компьютерного зрения для этих задач. Методика включала использование предобученных нейросетевых моделей с их дообучением на собственных наборах изображений и последующей оценкой показателей точности обнаружения и классификации. Настроенные на подобные задачи нейросети в системах поддержки принятия решений дополняются алгоритмами, работающими с базами знаний и расчетно-логическими моделями. Таким образом, создается программно-аппаратный комплекс, который позволяет не только автоматизировать выполнение текущих бизнес-задач, но и рекомендовать решения при возникновении сложных ситуаций, требующих в обычных условиях от персонала большого профессионального опыта и знаний. Исследование провели на базе агробиотехкомплекса Тюменского государственного университета.

Полный текст

Доступ закрыт

Об авторах

Игорь Николаевич Глухих

ФГАОУ ВО «Тюменский государственный университет»

Автор, ответственный за переписку.
Email: i.n.glukhikh@utmn.ru

доктор технических наук, профессор

Россия, Тюмень

Алексей Сергеевич Прохошин

ФГАОУ ВО «Тюменский государственный университет»

Email: i.n.glukhikh@utmn.ru

руководитель проекта

Россия, Тюмень

Дмитрий Игоревич Глухих

ФГАОУ ВО «Тюменский государственный университет»

Email: i.n.glukhikh@utmn.ru

аспирант

Россия, Тюмень

Татьяна Алексеевна Филатова

ФГАОУ ВО «Тюменский государственный университет»

Email: i.n.glukhikh@utmn.ru

лаборант

Россия, Тюмень

Список литературы

  1. Агробиотехкомплекс будущего создан в ТюмГУ. Электронный ресурс: [сайт]. – URL: https://www.utmn.ru/x-bio/novosti/nauka-i-innovatsii/1182531/ (дата обращения: 26.10.2023).
  2. Буторина Д.А., Ахтямов И.И. Объект городского фермерства как новое общественное пространство в современной России // Известия КГАСУ. 2022. № 4(62). С. 163–176. doi: 10.52409/20731523_2022_4_163. EDN: VTAGZC.
  3. Глухих И.Н., Прохошин А.С., Глухих Д.И. Сравнение и отбор ситуаций в системах вывода решений на прецедентах для «умной» фермы // Информатика и автоматизация. 2023. Т. 22. № 4. С. 853–879. doi: 10.15622/ia.22.4.6.
  4. Журавлева Л.А. Сити-фермерство как перспективное направление развития агропроизводства // Научная жизнь. 2020. Т. 15. № 4. С. 492–503. doi: 10.35679/1991-9476- 2020-15-4-492-503.
  5. Махмудул Хасан А., Мд Ракиб Ул Ислам Р., Авинаш К. Классификация болезней листьев яблони с использованием набора данных изображений: подход многослойной сверточной нейронной сети // Информатика и автоматизация. 2022. Т. 21. № 4. C. 710–728. doi: 10.15622/ia.21.4.3.
  6. Руткин Н.М., Лагуткин О.Ю., Лагуткина Л.Ю. Урбанизированное агропроизводство (сити-фермерство) как перспективное направление развития мирового агропроизводства и способ повышения продовольственной безопасности городов//Вестник Астраханского государственного технического университета. Серия: рыбное хозяйство. 2017. Т. 2017. № 4. С. 95–108.
  7. Aamodt A., Plaza E. Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications. 2001. Vol. 7. PP. 39–59. doi: 10.3233/AIC-1994-7104.
  8. Afzaal U., Bhattarai B., Pandeya Y.R., Lee J. An Instance Segmentation Model for Strawberry Diseases Based on Mask R-CNN. Sensors. 2021, 21, 6565.
  9. Bhujel A., Kim N.-E., Arulmozhi E., Basak J.K. et al. A Lightweight Attention-Based Convolutional Neural Networks for Tomato Leaf Disease Classification. Agriculture. 2022. № 12(2). P. 228. doi: 10.3390/agriculture12020228. doi:10.3390/ agriculture12020228.
  10. Detection tasks / [Электронный ресурс] // Ультралитикс : [сайт]. – URL: https://docs.ultralytics.com/tasks/detect/ (дата обращения: 26.10.2023).
  11. Elhariri E., El-Bendary N., Saleh S.M., Strawberry-DS: Dataset of annotated strawberry fruits images with various developmental stages. Data in Brief. 2023. Vol. 48, 109165. doi: 10.1016/j.dib.2023.109165.
  12. Hu W.-C., Chen L.-B., Huang B.-K., Lin H.-M. A Computer Vision-Based Intelligent Fish Feeding System Using Deep Learning Techniques for Aquaculture. IEEE Sensors Journal. 2022. Vol. 22. № 7. PP. 7185–7194. doi: 10.1109/JSEN.2022.3151777.
  13. Juan Terven, Diana Cordova-Esparza. A Comprehensive Review of YOLO: From YOLOv1 and Beyond. 2023. URL: https://doi.org/10.48550/arXiv.2304.00501.
  14. Martin M., Molin E. Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden // Sustainability. 2019. Vol. 11(15). № 4124. doi: 10.3390/su11154124.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунки к статье Глухих И.Н. и др. «Нейросети компьютерного зрения в системах поддержки принятия решений на умной ферме» (стр. 53)

Скачать (410KB)

© Российская академия наук, 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.