Electroconductive Materials Based on Polylactide and Polypyrrole for Biomedical Applications

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Electroconductive scaffolds of different shape for tissue engineering have been obtained on the basis of two biocompatible polymers: polylactide and polypyrrole. The composite scaffolds have been based on porous permeable films or tubes of polylactides prepared via electrospinning. A layer of electroconductive polypyrrole has been applied at the developed surface of the scaffolds consisting of the chaotically interwoven fibers of micron-scale thickness. The structure of the tissue engineering scaffolds as well as their mechanical, redox, and electroconductive properties have been investigated. It has been found that the scaffolds are stable during electrical stimulation via prolonged application of the cyclic potentials.

Sobre autores

N. Zavrazhnykh

Peter the Great St. Petersburg Polytechnic University

Email: sapurina@mail.ru
195251, St. Petersburg, Russia

I. Sapurina

Institute of Macromolecular Compounds, Russian Academy of Sciences

Email: sapurina@mail.ru
199004, St. Petersburg, Russia

M. Shishov

Institute of Macromolecular Compounds, Russian Academy of Sciences; Peter the Great St. Petersburg Polytechnic University

Email: sapurina@mail.ru
199004, St. Petersburg, Russia; 195251, St. Petersburg, Russia

E. Ivan’kova

Institute of Macromolecular Compounds, Russian Academy of Sciences; Peter the Great St. Petersburg Polytechnic University

Email: sapurina@mail.ru
199004, St. Petersburg, Russia; 195251, St. Petersburg, Russia

V. Orlov

Kirov Military Medical Academy, Ministry of Defense of the Russian Federation

Email: sapurina@mail.ru
194044, St. Petersburg, Russia

V. Yudin

Institute of Macromolecular Compounds, Russian Academy of Sciences; Peter the Great St. Petersburg Polytechnic University

Autor responsável pela correspondência
Email: sapurina@mail.ru
199004, St. Petersburg, Russia; 194044, St. Petersburg, Russia

Bibliografia

  1. Gupta A.P., Kumar V. // Eur. Polym. J. 2007. V. 43. P. 4053.
  2. Nampoothiri K.M., Nair N.R., John R.P. // Bioresource Technol. 2010. V. 101. P. 8493.
  3. Standau T., Zhao C., Castellón S.M., Bonten C., Altstädt V. // Polymers. 2019. V. 11. P. 306.
  4. Banerjee R., Ray S.S. // Polym. Eng. Sci. 2021. V. 61. P. 617.
  5. Slomkowski S., Penczek S., Duda A. // Polym. Adv. Technol. 2014. V. 25. P. 436.
  6. Anderson K.S., Schreck K.M., Hillmyer M.A. // Polym. Revs 2008. V. 48. № 1. P. 85.
  7. Corneillie S., Smet M. // Polym. Chem. 2015. V. 6. P. 850.
  8. Musioł M., Sikorska W., Adamus G., Janeczek H., Ko-walczuk M., Rydz J. // Eur Food Res Technol. 2015.
  9. Sawalha H., Schroen K., Boom R. // Chem. Eng. J. 2011. V. 169. P. 1.
  10. Tümer E.H., Erbil H.Y. // Coatings. 2021. V. 11. P. 390.
  11. Demina T.S., Akopova T.A., Zelenetsky A.N. // Polymer Science C. 2021. V. 63. № 2. P. 219.
  12. Kamalov A., Shishov M., Smirnova N., Kodolova-Chukhontseva V., Dobrovol’skaya I., Kolbe K., Didenko A., Ivan’kova E., Yudin V., Morganti P. // J. Funct. Biomater. 2022. V. 13. P. 89.
  13. Kodolova-Chukhontseva V.V., Shishov M.A., Kolbe K.A., Smirnova N.V., Dobrovol’skaya I.P., Dresvyanina E.N., Bystrov S.G., Terebova N.S., Kamalov A.M., Bursian A.E., Ivan’kova E.M., Yudin V.E. // Polymers. 2022. V. 14. P. 3287.
  14. Vandghanooni S., Eskandani M. // Int. J. Biol. Macromol. 2019. V. 141. P. 636.
  15. Колбе К.А., Шишов М.А., Сапурина И.Ю., Смирнова Н.В., Кодолова-Чухонцева В.В., Дресвянина Е.Н., Камалов А.М., Юдин В.Е. // Журн. техн. физики. 2021. Т. 91. № 12. С. 2061.
  16. Llorens E., Armelin E., del Mar Pérez-Madrigal M., Javier del Valle L., Alemán C., Puiggalí J. // Polymers. 2013. V. 5. P. 1115.
  17. Shishov M.A., Sapurina I.Yu., Smirnova N.V., Yudin V.E. // Biointerface Res. Appl. Chem. 2023. V. 13. № 1. P. 96.
  18. Zhou X., Yang A., Huang Z., Yin G., Pu X., Jin J. // Colloids Surf. B. 2017. V. 149. № 1. P. 217.
  19. da Silva A.C., Córdoba de Torresi S.I. // Front. Mater. 2019. V. 6. P. 98.
  20. Sapurina I.Yu. Matrenichev V.V., Vlasova E.N., Shishov M.A., Ivan’kova E.M., Dobrovol’skaya I.P., Yudin V.E. // Polymer Science B. 2020. V. 62. № 2. P. 116.
  21. Toncheva A., Spasova M., Paneva D., Manolova N., Rashkov I. // Int. J. Polym. Mater. Polym. Biomater. 2014. V. 63. P. 657.
  22. Can-Herrera L.A., Oliva A.I., Dzul-Cervantes M.A., Pacheco-Salazar A., Cervantes-Uc O.F. // Polymers. 2021. V. 13. P. 662.
  23. Dobrovol’skaya I.P., Zavrazhnykh N.A., Popryadukhin P.V., Kasatkin I.A., Popova E.N., Ivan’kova E.M., Saprykina N.N., Yudin V.E. // Polymer Science A. 2020. V. 62. № 4. P. 354.
  24. Sapurina I., Stejskal J., Spirkova M., Kotek J. // Synth. Met. 2005. V. 151. № 2. P. 93.
  25. Hernández-Gascón B., Peña E., Melero H., Pascual G., Doblaré M., Ginebra M. P., Bellón J. M., Calvo B. // Acta Biomater. 2011. V. 7. № 11. P. 3905.
  26. Nekounam H., Gholizadeh S., Allahyari Z., Samadian H., Nazeri N., Shokrgozare M.A., Faridi-Majidi R. // Mater. Res. Bull. 2021. V. 134. P. 111083.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (11KB)
3.

Baixar (755KB)
4.

Baixar (1MB)
5.

Baixar (4MB)
6.

Baixar (2MB)
7.

Baixar (94KB)
8.

Baixar (18KB)
9.

Baixar (40KB)

Declaração de direitos autorais © Н.А. Завражных, И.Ю. Сапурина, М.А. Шишов, Е.М. Иванькова, В.П. Орлов, В.Е. Юдин, 2023