Ion Transport Asymmetry in Hybrid Membranes MF-4SK with Gradient Distribution of Hydrated Silicon Oxide, Including Modified Surface

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents the results of investigation of properties of hybrid materials based on homogeneous membrane MF-4SC with gradient distribution of dopant along the thickness. Hydrated silicon oxide nanoparticles, including those with a functionalized surface containing proton acceptor groups, were used as dopant. The presence of asymmetry of diffusion permeability of HCl and NaCl solutions of the studied membranes was revealed. It is shown that the diffusion permeability depends on the orientation of the membrane with respect to the electrolyte solution and the asymmetry reaches 65%. Depending on the surface properties of the introduced silicon oxide (on the nature and size of grafted groups) the direction of preferential ion transport changes. The causes of the diffusion permeability asymmetry and factors determining its direction are described.

全文:

受限制的访问

作者简介

E. Safronova

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: safronova@igic.ras.ru
俄罗斯联邦, Leninsky Prospekt, 31, Moscow, 119991

Yu. Karavanova

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: safronova@igic.ras.ru
俄罗斯联邦, Leninsky Prospekt, 31, Moscow, 119991

I. Stenina

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: safronova@igic.ras.ru
俄罗斯联邦, Leninsky Prospekt, 31, Moscow, 119991

D. Voropaeva

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: safronova@igic.ras.ru
俄罗斯联邦, Leninsky Prospekt, 31, Moscow, 119991

D. Safronov

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: safronova@igic.ras.ru
俄罗斯联邦, Leninsky Prospekt, 31, Moscow, 119991

A. Lysova

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: safronova@igic.ras.ru
俄罗斯联邦, Leninsky Prospekt, 31, Moscow, 119991

V. Krutko

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: safronova@igic.ras.ru
俄罗斯联邦, Leninsky Prospekt, 31, Moscow, 119991

A. Manin

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: safronova@igic.ras.ru
俄罗斯联邦, Leninsky Prospekt, 31, Moscow, 119991

参考

  1. Jiang S., Sun H., Wang H., Ladewig B.P., Yao Z. A comprehensive review on the synthesis and applications of ion exchange membranes // Chemosphere. 2021. V. 282. 130817. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130817
  2. Strathmann H., Grabowski A., Eigenberger G. Ion-exchange membranes in the chemical process industry // Ind. Eng. Chem. Res. 2013. V. 52. P. 10364–10379. https://doi.org/10.1021/ie4002102
  3. Ran J., Wu L., He Y., Yang Z., Wang Y., Jiang C., Ge L., Bakangura E., Xu T. Ion exchange membranes: New developments and applications // J. Memb. Sci. 2017. V. 522. P. 267–291. https://doi.org/10.1016/J.MEMSCI.2016.09.033
  4. Филиппов С.П., Ярославцев А.Б. Водородная энергетика: перспективы развития и материалы // Успехи химии. 2021. № 90. С. 627–643.
  5. Bakangura E., Wu L., Ge L., Yang Z., Xu T. Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives // Prog. Polym. Sci. 2016. V. 57. P. 103–152. https://doi.org/10.1016/J.PROGPOLYMSCI.2015.11.004
  6. Safronova E.Y., Lysova A.A., Voropaeva D.Y., Yaroslavtsev A.B. Approaches to the Modification of Perfluorosulfonic Acid Membranes // Membranes (Basel). 2023. V. 13. https://doi.org/10.3390/membranes13080721
  7. Zakaria Z., Shaari N., Kamarudin S.K., Bahru R., Musa M.T. A review of progressive advanced polymer nanohybrid membrane in fuel cell application // Int. J. Energy Res. 2020. V. 44. P. 8255–8295. https://doi.org/10.1002/ER.5516
  8. Prykhodko Y., Fatyeyeva K., Hespel L., Marais S. Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application // Chem. Eng. J. 2020. 127329. https://doi.org/10.1016/j.cej.2020.127329
  9. Wong C.Y., Wong W.Y., Ramya K., Khalid M., Loh K.S., Daud W.R.W., Lim K.L., Walvekar R., Kadhum A.A.H. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review // Int. J. Hydrogen Energy. 2019. V. 44. P. 6116–6135. https://doi.org/10.1016/J.IJHYDENE.2019.01.084
  10. Kim D.J., Jo M.J., Nam S.Y. A review of polymer–nanocomposite electrolyte membranes for fuel cell application // J. Ind. Eng. Chem. 2015. V. 21. P. 36–52. https://doi.org/10.1016/J.JIEC.2014.04.030
  11. Makhsoos A., Kandidayeni M., Pollet B.G., Boulon L. A perspective on increasing the efficiency of proton exchange membrane water electrolyzers – a review // Int. J. Hydrogen Energy. 2023. https://doi.org/10.1016/j.ijhydene.2023.01.048
  12. Ачох А.Р., Бондарев Д.А., Мельников С.С., Заболоцкий В.И. Избирательная проницаемость гомогенной бислойной мембраны МФ-4СК с селективным слоем из катионного полиэлектролита в смешанном растворе хлорида кальция и хлорида натрия // Мембраны и мембранные технологии. 2024. № 14. С. 358–367. https://doi.org/10.31857/S2218117224050026
  13. Siwy Z., Kosińska I.D., Fuliński A., Martin C.R. Asymmetric diffusion through synthetic nanopores // Phys. Rev. Lett. 2005. V. 94. 048102. https://doi.org/10.1103/PHYSREVLETT.94.048102/FIGURES/4/THUMBNAIL
  14. Apel P.Y., Korchev Y.E., Siwy Z., Spohr R., Yoshida M. Diode-like single-ion track membrane prepared by electro-stopping // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 2001. V. 184. 337–346. https://doi.org/10.1016/S0168-583X(01)00722-4
  15. Fan H., Xu Y., Zhao F., Chen Q.B., Wang D., Wang J. A novel porous asymmetric cation exchange membrane with thin selective layer for efficient electrodialysis desalination // Chem. Eng. J. 2023. V. 472. 144856. https://doi.org/10.1016/J.CEJ.2023.144856
  16. Лысова А.А., Стенина И.А., Горбунова Ю.Г., Кононенко Н.А., Ярославцев А.Б. Композиционные системы полианилин/МФ-4СК с модифицированным поверхностным слоем // Электрохимия. 2011. № 47. С. 618–624.
  17. Loza N., Falina I.V., Kutenko N., Shkirskaya S., Loza J., Kononenko N. Bilayer Heterogeneous Cation Exchange Membrane with Polyaniline Modified Homogeneous Layer: Preparation and Electrotransport Properties // Membranes (Basel). 2023. V. 13. P. 829. https://doi.org/10.3390/membranes13100829
  18. Сафронова Е.Ю., Прихно И.А., Пурсели Ж., Ярославцев А.Б. Асимметрия ионного транспорта в гибридных мембранах МФ-4СК с градиентным распределением гидратированного оксида циркония // Мембраны и мембранные технологии. 2013. № 3. С. 308–313.
  19. Филиппов А.Н., Кононенко Н.А., Фалина И.В., Тицкая Е.В., Петрова Д.А. Электродиффузионные характеристики бислойных мембран, модифицированных галлуазитом // Коллоидный журнал. 2020. № 82. С. 106–118. https://doi.org/10.31857/S002329122001005X
  20. Filippov A.N., Kononenko N.A., Loza N.V., Kopitsyn D.S., Petrova D.A. Modelling of transport properties of perfluorinated one- and bilayer membranes modified by polyaniline decorated clay nanotubes // Electrochim. Acta. 2021. V. 389. 138768. https://doi.org/10.1016/J.ELECTACTA.2021.138768
  21. Filippov A.N. Asymmetry of current-voltage characteristics of ion-exchange membranes: Model of charge density of fixed groups linear by membrane thickness // Russ. J. Electrochem. 2017. V. 53. P. 257–269. https://doi.org/10.1134/S1023193517030053/METRICS
  22. Kusoglu A., Weber A.Z. New insights into perfluorinated sulfonic-acid ionomers // Chem. Rev. 2017. V. 117. P. 987–1104. https://doi.org/10.1021/acs.chemrev.6b00159
  23. Lim J.H., Hou J., Kim W.Y., Wi S., Lee C.H. The relationship between chemical structure of perfluorinated sulfonic acid ionomers and their membrane properties for PEMEC application // Int. J. Hydrogen Energy. 2024. V. 49. P. 794–804. https://doi.org/10.1016/J.IJHYDENE.2023.09.131
  24. Сафронова Е.Ю., Ильин А.Б., Лысова А.А., Ярославцев А.Б. Влияние модификации поверхности углеродсодержащими фрагментами на размер, свойства и морфологию частиц оксида кремния // Неорганические материалы. 2012. № 48. С. 437–442.
  25. Mikheev A.G., Safronova E.Y., Yurkov G.Y., Yaroslavtsev A.B. Hybrid materials based on MF-4SC perfluorinated sulfo cation-exchange membranes and silica with proton-acceptor properties // Mendeleev Commun. 2013. V. 23. https://doi.org/10.1016/j.mencom.2013.03.002
  26. Kononenko N.A., Shkirskaya S.A., Rybalko M.V., Zotova D.A. The Influence of Inert Fluoropolymer on Equilibrium and Dynamic Hydration Characteristics of MF-4SC Membrane // Colloid J. 2023. V. 85. P. 908–916. https://doi.org/10.1134/S1061933X23600732/FIGURES/7
  27. Novikova S.A., Safronova E.Y., Lysova A.A., Yaroslavtsev A.B. Influence of incorporated nanoparticles on the ionic conductivity of MF-4SC membrane // Mendeleev Commun. 2010. V. 20. https://doi.org/10.1016/j.mencom.2010.05.011
  28. Stenina I.A., Yaroslavtsev A.B. Ionic Mobility in Ion-Exchange Membranes // Membranes (Basel). 2021. V. 11. P. 198. https://doi.org/10.3390/membranes11030198
  29. Larchet C., Nouri S., Auclair B., Dammak L., Nikonenko V. Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection // Adv. Colloid Interface Sci. 2008. V. 139. P. 45–61. https://doi.org/10.1016/J.CIS.2008.01.007
  30. Porozhnyy M.V., Shkirskaya S.A., Butylskii D.Y., Dotsenko V.V., Safronova E.Y., Yaroslavtsev A.B., Deabate S., Huguet P., Nikonenko V.V. Physicochemical and electrochemical characterization of Nafion®-type membranes with embedded silica nanoparticles: Effect of functionalization // Electrochim. Acta. 2021. V. 370. https://doi.org/10.1016/j.electacta.2020.137689

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme for measuring the diffusion permeability of hybrid membranes with a gradient distribution of the dopant depending on the orientation relative to the diffusing solution.

下载 (161KB)
3. Fig. 2. TEM micrograph of the hybrid membrane MF-4SK. The composition of the modified layer: MF-4SK + 3 wt.% SiO₂(5 mol.% 3-(2-imidazolin-1-yl)propyl-, R2). The concentration of modifying groups is calculated from the concentration of SiO₂ in the modified layer.

下载 (502KB)
4. Fig. 3. Dependence of proton conductivity on temperature for MF-4SK membranes with different SiO₂ content in the modified layer (a) and membranes containing 3 wt.% SiO₂ in the modified layer with a modified surface with 3-aminopropyl- (R1) and 3-(2-imidazolin-1-yl)propyl- (R2) groups (b). The composition of the modified layer is shown in the figures. The changes were carried out in contact with water.

下载 (351KB)
5. Fig. 4. Diffusion permeability of the studied membranes (columns) in 0.1 M HCl (a) and NaCl (b) solutions and the diffusion permeability asymmetry coefficient (dots) for membranes with non-uniform dopant distribution across the entire membrane thickness. The content of hydrated silicon oxide in the modified layer (wt.%) is shown in the figure.

下载 (334KB)
6. Fig. 5. Schematic representation of the system of pores and channels in the membrane from the unmodified (left part of the figure) and modified (right part of the figure) sides.

下载 (579KB)

版权所有 © Russian Academy of Sciences, 2025