Exploring the Theranostic Applications and Prospects of Nanobubbles


Дәйексөз келтіру

Толық мәтін

Аннотация

Anticancer medications as well as additional therapeutic compounds, have poor clinical effectiveness due to their diverse distribution, non-selectivity for malignant cells, and undesirable off-target side effects. As a result, ultrasound-based targeted delivery of therapeutic compounds carried in sophisticated nanocarriers has grown in favor of cancer therapy and control. Nanobubbles are nanoscale bubbles that exhibit unique physiochemical properties in both their inner core and outer shell. Manufacturing nanobubbles primarily aims to enhance therapeutic agents' bioavailability, stability, and targeted delivery. The small size of nanobubbles allows for their extravasation from blood vessels into surrounding tissues and site-specific release through ultrasound targeting. Ultrasound technology is widely utilized for therapy due to its speed, safety, and cost-effectiveness, and micro/nanobubbles, as ultrasound contrast agents, have numerous potential applications in disease treatment. Thus, combining ultrasound applications with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side effects on other non-cancerous tissues. This paper provides a brief overview of the production processes for nanobubbles, along with their key characteristics and potential therapeutic uses.

Авторлар туралы

Rahul Shah

Department of Pharmaceutics, School of Pharmacy & Technology Management,, SVKM'S NMIMS Deemed-to-be University

Email: info@benthamscience.net

Niraj Phatak

Department of Pharmaceutics, School of Pharmacy & Technology Management,, SVKM'S NMIMS Deemed-to-be University

Email: info@benthamscience.net

Ashok Choudhary

Department of Quality Assurance, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University,

Email: info@benthamscience.net

Sakshi Gadewar

Department of Pharmaceutics, School of Pharmacy & Technology Management,, SVKM'S NMIMS Deemed-to-be University

Email: info@benthamscience.net

Ajazuddin

Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences & Research

Email: info@benthamscience.net

Sankha Bhattacharya

Department of Pharmaceutics, School of Pharmacy & Technology Management,, SVKM'S NMIMS Deemed-to-be University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Thirumalaivasan, N.; Venkatesan, P.; Lai, P.S.; Wu, S.P. In vitro and in vivo approach of hydrogen-sulfide-responsive drug release driven by azide-functionalized mesoporous silica nanoparticles. ACS Appl. Bio Mater., 2019, 2(9), 3886-3896. doi: 10.1021/acsabm.9b00481 PMID: 35021323
  2. Ketabat, Farinaz Controlled drug delivery systems for oral cancer treatment—current status and future perspectives. Pharmaceutics, 2019, 11(7), 302. doi: 10.3390/pharmaceutics11070302
  3. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
  4. Young-sun, K. Uterine fibroids: Semiquantitative perfusion MR imaging parameters associated with the intraprocedural and immediate postprocedural treatment efficiencies of MR imaging-guided high-intensity focused ultrasound ablation. Radiology, 2014, 273(2), 462-471.
  5. Borregaard, R.; Lukac, P.; Gerdes, C.; Møller, D.; Mortensen, P.T.; Pedersen, L.; Nielsen, J.C.; Jensen, H.K. Radiofrequency ablation of accessory pathways in patients with the Wolff-Parkinson-White syndrome: The long-term mortality and risk of atrial fibrillation. Europace, 2015, 17(1), 117-122. doi: 10.1093/europace/euu176 PMID: 25013013
  6. Taïeb, D.; Jha, A.; Treglia, G.; Pacak, K. Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr. Relat. Cancer, 2019, 26(11), R627-R652. doi: 10.1530/ERC-19-0165 PMID: 31561209
  7. Shen, Y.; Lv, W.; Yang, H.; Cai, W.; Zhao, P.; Zhang, L.; Zhang, J.; Yuan, L.; Duan, Y. FA-NBs-IR780: Novel multifunctional nanobubbles as molecule-targeted ultrasound contrast agents for accurate diagnosis and photothermal therapy of cancer. Cancer Lett., 2019, 455, 14-25. doi: 10.1016/j.canlet.2019.04.023 PMID: 31018151
  8. Kiessling, F.; Fokong, S.; Bzyl, J.; Lederle, W.; Palmowski, M.; Lammers, T. Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv. Drug Deliv. Rev., 2014, 72, 15-27. doi: 10.1016/j.addr.2013.11.013 PMID: 24316070
  9. Zhu, G.; Zhang, Y.; Wang, K.; Zhao, X.; Lian, H.; Wang, W.; Wang, H.; Wu, J.; Hu, Y.; Guo, H. Visualized intravesical floating hydrogel encapsulating vaporized perfluoropentane for controlled drug release. Drug Deliv., 2016, 23(8), 2820-2826. doi: 10.3109/10717544.2015.1101791 PMID: 26515239
  10. Shagdarsuren, B.; Tamai, H.; Shingaki, N.; Mori, Y.; Maeshima, S.; Nuta, J.; Maeda, Y.; Moribata, K.; Niwa, T.; Deguchi, H.; Inoue, I.; Maekita, T.; Iguchi, M.; Kato, J.; Ichinose, M. Contribution of contrast-enhanced sonography with perfluorobutane microbubbles for diagnosis of recurrent hepatocellular carcinoma. J. Ultrasound Med., 2016, 35(7), 1383-1391. doi: 10.7863/ultra.15.08042 PMID: 27208196
  11. Pathak, V.; Nolte, T.; Rama, E.; Rix, A.; Dadfar, S.M.; Paefgen, V.; Banala, S.; Buhl, E.M.; Weiler, M.; Schulz, V.; Lammers, T.; Kiessling, F. Molecular magnetic resonance imaging of Alpha-v-Beta-3 integrin expression in tumors with ultrasound microbubbles. Biomaterials, 2021, 275, 120896. doi: 10.1016/j.biomaterials.2021.120896 PMID: 34090049
  12. Exner, A.A.; Kolios, M.C. Bursting microbubbles: How nanobubble contrast agents can enable the future of medical ultrasound molecular imaging and image-guided therapy. Curr. Opin. Colloid Interface Sci., 2021, 54, 101463. doi: 10.1016/j.cocis.2021.101463 PMID: 34393610
  13. Lajoinie, G.; van Rooij, T.; Skachkov, I.; Blazejewski, E.; Veldhuis, G.; de Jong, N.; Kooiman, K.; Versluis, M. Laser-activated polymeric microcapsules for ultrasound imaging and therapy: In vitro feasibility. Biophys. J., 2017, 112(9), 1894-1907. doi: 10.1016/j.bpj.2017.03.033 PMID: 28494960
  14. Cao, Yang Drug release from phase-changeable nanodroplets triggered by low-intensity focused ultrasound. Theranostics, 2018, 8(5), 1327. doi: 10.7150/thno.21492
  15. Wang, Shiying; Hossack, John .A.; Klibanov, Alexander .L Targeting of microbubbles: Contrast agents for ultrasound molecular imaging. J. Drug Target., 2018, 26(5-6), 420-434. doi: 10.1080/1061186X.2017.1419362
  16. Güvener, N.; Appold, L.; de Lorenzi, F.; Golombek, S.K.; Rizzo, L.Y.; Lammers, T.; Kiessling, F. Recent advances in ultrasound-based diagnosis and therapy with micro- and nanometer-sized formulations. Methods, 2017, 130, 4-13. doi: 10.1016/j.ymeth.2017.05.018 PMID: 28552267
  17. Cai, Wen Bin The optimized fabrication of nanobubbles as ultrasound contrast agents for tumor imaging. Sci. Report., 2015, 5(1), 13725. doi: 10.1038/srep13725
  18. Deshpande, N.; Needles, A.; Willmann, J.K. Molecular ultrasound imaging: Current status and future directions. Clin. Radiol., 2010, 65(7), 567-581. doi: 10.1016/j.crad.2010.02.013 PMID: 20541656
  19. Shakeri-Zadeh, A.; Zareyi, H.; Sheervalilou, R.; Laurent, S.; Ghaznavi, H.; Samadian, H. Gold nanoparticle-mediated bubbles in cancer nanotechnology. J. Control. Release, 2021, 330, 49-60. doi: 10.1016/j.jconrel.2020.12.022 PMID: 33340564
  20. Duan, Lei Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics, 2020, 10(2), 462. doi: 10.7150/thno.37593
  21. Yang, H.; Cai, W.; Xu, L.; Lv, X.; Qiao, Y.; Li, P.; Wu, H.; Yang, Y.; Zhang, L.; Duan, Y. Nanobubble–Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor. Biomaterials, 2015, 37, 279-288. doi: 10.1016/j.biomaterials.2014.10.013 PMID: 25453958
  22. Damien, V.B. Nanobubbles for therapeutic delivery: Production, stability and current prospects. Curr. Opin. Coll. Interface Sci., 2021, 54, 101456.
  23. Cavalli, R.; Soster, M.; Argenziano, M. Nanobubbles: A promising efficienft tool for therapeutic delivery. Ther. Deliv., 2016, 7(2), 117-138. doi: 10.4155/tde.15.92 PMID: 26769397
  24. Roovers, S.; Segers, T.; Lajoinie, G.; Deprez, J.; Versluis, M.; De Smedt, S.C.; Lentacker, I. The role of ultrasound-driven microbubble dynamics in drug delivery: From microbubble fundamentals to clinical translation. Langmuir, 2019, 35(31), 10173-10191. doi: 10.1021/acs.langmuir.8b03779 PMID: 30653325
  25. Abenojar, E.C.; Nittayacharn, P.; de Leon, A.C.; Perera, R.; Wang, Y.; Bederman, I.; Exner, A.A. Effect of bubble concentration on the in vitro and in vivo performance of highly stable lipid shell-stabilized micro-and nanoscale ultrasound contrast agents. Langmuir, 2019, 35(31), 10192-10202. doi: 10.1021/acs.langmuir.9b00462 PMID: 30913884
  26. Lu, Shirui Mechanistic Insights and therapeutic delivery through micro/nanobubble-assisted ultrasound. Pharmaceutics, 2022, 14(3), 480. doi: 10.3390/pharmaceutics14030480
  27. Dichiarante, V.; Milani, R.; Metrangolo, P. Natural surfactants towards a more sustainable fluorine chemistry. Green Chem., 2018, 20(1), 13-27. doi: 10.1039/C7GC03081A
  28. Tehrani Fateh, S.; Moradi, L.; Kohan, E.; Hamblin, M.R.; Shiralizadeh Dezfuli, A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: Mechanisms, structures and medical applications. Beilstein J. Nanotechnol., 2021, 12(1), 808-862. doi: 10.3762/bjnano.12.64 PMID: 34476167
  29. Thomas, S.H. Ultrasonic encapsulation-A review. Ultrason. Sonochem., 2017, 35, 605-614.
  30. Prasher, P.; Sharma, M.; Mehta, M.; Satija, S.; Aljabali, A.A.; Tambuwala, M.M.; Anand, K.; Sharma, N.; Dureja, H.; Jha, N.K.; Gupta, G.; Gulati, M.; Singh, S.K.; Chellappan, D.K.; Paudel, K.R.; Hansbro, P.M.; Dua, K. Current-status and applications of polysaccharides in drug delivery systems. Colloid Interface Sci. Commun., 2021, 42, 100418. doi: 10.1016/j.colcom.2021.100418
  31. Su, C.; Ren, X.; Nie, F.; Li, T.; Lv, W.; Li, H.; Zhang, Y. Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: A review of the current status and future perspectives. RSC Advances, 2021, 11(21), 12915-12928. doi: 10.1039/D0RA08727K PMID: 35423829
  32. Cao, Q.; Li, X.; Zhang, Q.; Zhou, K.; Yu, Y.; He, Z.; Xiang, Z.; Qiang, Y.; Qi, W. Big data analysis of manufacturing and preclinical studies of nanodrug-targeted delivery systems: A literature review. BioMed Res. Int., 2022, 2022, 1-10. doi: 10.1155/2022/1231446 PMID: 35941977
  33. Mitragotri, Samir; Lahann, Joerg Materials for drug delivery: Innovative solutions to address complex biological hurdles. Adv. Mater., 2012, 24, 3717-3723. doi: 10.1002/adma.201202080
  34. Subhan, Md Abdus Recent advances in tumor targeting via EPR effect for cancer treatment. J. Personal Med., 2021, 11(6), 571. doi: 10.3390/jpm11060571
  35. Nazir, F.; Tabish, T.A.; Tariq, F.; Iftikhar, S.; Wasim, R.; Shahnaz, G. Stimuli-sensitive drug delivery systems for site-specific antibiotic release. Drug Discov. Today, 2022, 27(6), 1698-1705. doi: 10.1016/j.drudis.2022.02.014 PMID: 35219858
  36. Li, T.; Zhou, J.; Zhang, C.; Zhi, X.; Niu, J.; Fu, H.; Song, J.; Cui, D. Surface-engineered nanobubbles with pH-/light-responsive drug release and charge-switchable behaviors for active NIR/MR/US imaging-guided tumor therapy. NPG Asia Mater., 2018, 10(11), 1046-1060. doi: 10.1038/s41427-018-0094-6
  37. Yasui, K.; Tuziuti, T.; Kanematsu, W. Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation. Ultrason. Sonochem., 2018, 48, 259-266. doi: 10.1016/j.ultsonch.2018.05.038 PMID: 30080549
  38. Yasuda, K.; Matsushima, H.; Asakura, Y. Generation and reduction of bulk nanobubbles by ultrasonic irradiation. Chem. Eng. Sci., 2019, 195, 455-461. doi: 10.1016/j.ces.2018.09.044
  39. Nirmalkar, N.; Pacek, A.W.; Barigou, M.A.W. Pacek, and Mostafa Barigou. "On the existence and stability of bulk nanobubbles.". Langmuir, 2018, 34(37), 10964-10973. doi: 10.1021/acs.langmuir.8b01163 PMID: 30179016
  40. Cho, Sung-Ho Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Coll. Surf. A: Physicochem. Eng. Aspec., 2005, 269(1-3), 28-34. doi: 10.1016/j.colsurfa.2005.06.063
  41. Chen, Y.; Truong, V.N.T.; Bu, X.; Xie, G. A review of effects and applications of ultrasound in mineral flotation. Ultrason. Sonochem., 2020, 60, 104739. doi: 10.1016/j.ultsonch.2019.104739 PMID: 31557697
  42. RAY. Nano bubbles: Concept & recent advances as therapeutic agent. Asian J. Adv. Res., 2021, 1085-1097.
  43. An, H.; Liu, G.; Craig, V.S.J. Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces. Adv. Colloid Interface Sci., 2015, 222, 9-17. doi: 10.1016/j.cis.2014.07.008 PMID: 25128452
  44. Xiao, Q.; Liu, Y.; Guo, Z.; Liu, Z.; Lohse, D.; Zhang, X. Solvent exchange leading to nanobubble nucleation: A molecular dynamics study. Langmuir, 2017, 33(32), 8090-8096. doi: 10.1021/acs.langmuir.7b01231 PMID: 28742364
  45. Chen, M.; Peng, L.; Qiu, J.; Luo, K.; Liu, D.; Han, P. Monitoring of an ethanol-water exchange process to produce bulk nanobubbles based on dynamic light scattering. Langmuir, 2020, 36(34), 10069-10073. doi: 10.1021/acs.langmuir.0c01170 PMID: 32787124
  46. Guan, M.; Guo, W.; Gao, L.; Tang, Y.; Hu, J.; Dong, Y. Investigation on the temperature difference method for producing nanobubbles and their physical properties. ChemPhysChem, 2012, 13(8), 2115-2118. doi: 10.1002/cphc.201100912 PMID: 22505224
  47. Hao, R.; Fan, Y.; Howard, M.D.; Vaughan, J.C.; Zhang, B. Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting. Proc. Natl. Acad. Sci. USA, 2018, 115(23), 5878-5883. doi: 10.1073/pnas.1800945115 PMID: 29784824
  48. Nazari, Sabereh Recent developments in generation, detection and application of nanobubbles in flotation. Minerals, 2022, 12(4), 462. doi: 10.3390/min12040462
  49. Postnikov, A.V.; Uvarov, I.V.; Penkov, N.V.; Svetovoy, V.B. Collective behavior of bulk nanobubbles produced by alternating polarity electrolysis. Nanoscale, 2018, 10(1), 428-435. doi: 10.1039/C7NR07126D PMID: 29226935
  50. Hao, R.; Fan, Y.; Anderson, T.J.; Zhang, B. Imaging single nanobubbles of H2 and O2 during the overall water electrolysis with single-molecule fluorescence microscopy. Anal. Chem., 2020, 92(5), 3682-3688. doi: 10.1021/acs.analchem.9b04793 PMID: 32024359
  51. Ranaweera, R.; Luo, L. Electrochemistry of nanobubbles. Curr. Opin. Electrochem., 2020, 22, 102-109. doi: 10.1016/j.coelec.2020.04.019
  52. Zhang, F.; Sun, L.; Yang, H.; Gui, X.; Schönherr, H.; Kappl, M.; Cao, Y.; Xing, Y. Recent advances for understanding the role of nanobubbles in particles flotation. Adv. Colloid Interface Sci., 2021, 291, 102403. doi: 10.1016/j.cis.2021.102403 PMID: 33780858
  53. Theodorakis, P.E.; Che, Z. Surface nanobubbles: Theory, simulation, and experiment. A review. Adv. Colloid Interface Sci., 2019, 272, 101995. doi: 10.1016/j.cis.2019.101995 PMID: 31394435
  54. Vu, Tri; Razansky, Daniel; Yao, Junjie Listening to tissues with new light: Recent technological advances in photoacoustic imaging. J. Opt., 2019, 21(10), 103001. doi: 10.1088/2040-8986/ab3b1a
  55. Ou, H.; Li, J.; Chen, C.; Gao, H.; Xue, X.; Ding, D. Organic/polymer photothermal nanoagents for photoacoustic imaging and photothermal therapy in vivo. Sci. China Mater., 2019, 62(11), 1740-1758. doi: 10.1007/s40843-019-9470-3
  56. Piperno, A.; Sciortino, M.T.; Giusto, E.; Montesi, M.; Panseri, S.; Scala, A. Recent advances and challenges in gene delivery mediated by polyester-based nanoparticles. Int. J. Nanomedicine, 2021, 16, 5981-6002. doi: 10.2147/IJN.S321329 PMID: 34511901
  57. Wu, R.; Yang, X.; Li, X.; Dong, N.; Liu, Y.; Zhang, P. Nanobubbles for tumors: Imaging and drug carriers. J. Drug Deliv. Sci. Technol., 2021, 65, 102749. doi: 10.1016/j.jddst.2021.102749
  58. Shang, M.; Sun, X.; Guo, L.; Shi, D.; Liang, P.; Meng, D.; Zhou, X.; Liu, X.; Zhao, Y.; Li, J. pH-and ultrasound-responsive paclitaxel-loaded carboxymethyl chitosan nanodroplets for combined imaging and synergistic chemoradiotherapy. Int. J. Nanomedicine, 2020, 15, 537-552. doi: 10.2147/IJN.S233669 PMID: 32021193
  59. Liu, J.; Shang, T.; Wang, F.; Cao, Y.; Hao, L.; Ren, J.; Ran, H.; Wang, Z.; Li, P.; Du, Z. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging. Int. J. Nanomedicine, 2017, 12, 911-923. doi: 10.2147/IJN.S122667 PMID: 28184161
  60. Wang, J.; Barback, C.V.; Ta, C.N.; Weeks, J.; Gude, N.; Mattrey, R.F.; Blair, S.L.; Trogler, W.C.; Lee, H.; Kummel, A.C. Extended lifetime in vivo pulse stimulated ultrasound imaging. IEEE Trans. Med. Imaging, 2018, 37(1), 222-229. doi: 10.1109/TMI.2017.2740784 PMID: 28829305
  61. Wu, Jianrong A multifunctional biodegradable nanocomposite for cancer theranostics. Adv. Sci., 2019, 6(14), 1802001. doi: 10.1002/advs.201802001
  62. Li, Chunxiao Light‐responsive biodegradable nanorattles for cancer theranostics. Adv. Mater., 2018, 308, 1706150. doi: 10.1002/adma.201706150
  63. Hysi, E.; Fadhel, M.N.; Wang, Y.; Sebastian, J.A.; Giles, A.; Czarnota, G.J.; Exner, A.A.; Kolios, M.C. Photoacoustic imaging biomarkers for monitoring biophysical changes during nanobubble-mediated radiation treatment. Photoacoustics, 2020, 20, 100201. doi: 10.1016/j.pacs.2020.100201 PMID: 32775198
  64. Kooiman, K.; Roovers, S.; Langeveld, S.A.G.; Kleven, R.T.; Dewitte, H.; O’Reilly, M.A.; Escoffre, J.M.; Bouakaz, A.; Verweij, M.D.; Hynynen, K.; Lentacker, I.; Stride, E.; Holland, C.K. Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med. Biol., 2020, 46(6), 1296-1325. doi: 10.1016/j.ultrasmedbio.2020.01.002 PMID: 32165014
  65. Power, S.; Slattery, M.M.; Lee, M.J. Nanotechnology and its relationship to interventional radiology. part II: Drug delivery, thermotherapy, and vascular intervention. Cardiovasc. Intervent. Radiol., 2011, 34(4), 676-690. doi: 10.1007/s00270-010-9967-y PMID: 20845040
  66. Hysi, E. Radiation-enhanced nanobubble therapy: Monitoring treatment effects using photoacoustic imaging. 2019 IEEE International Ultrasonics Symposium (IUS)., Glasgow, UK, 06-09 Oct, 2019 doi: 10.1109/ULTSYM.2019.8925876
  67. Cheng, B.; Bing, C.; Xi, Y.; Shah, B.; Exner, A.A.; Chopra, R. Influence of nanobubble concentration on blood-brain barrier opening using focused ultrasound under real-time acoustic feedback control. Ultrasound Med. Biol., 2019, 45(8), 2174-2187. doi: 10.1016/j.ultrasmedbio.2019.03.016 PMID: 31072657
  68. Du, Jing Preparation and imaging investigation of dual-targeted C3F8-filled PLGA nanobubbles as a novel ultrasound contrast agent for breast cancer. Sci. Rep., 2018, 8(1), 3887. doi: 10.1038/s41598-018-21502-x
  69. Ding, Y.; Cao, Q.; Qian, S.; Chen, X.; Xu, Y.; Chen, J.; Shen, H. Optimized anti–prostate‐specific membrane antigen single‐chain variable fragment–loaded nanobubbles as a novel targeted ultrasound contrast agent for the diagnosis of prostate cancer. J. Ultrasound Med., 2020, 39(4), 761-773. doi: 10.1002/jum.15155 PMID: 31702068
  70. Chan, M.H.; Chen, W.; Li, C.H.; Fang, C.Y.; Chang, Y.C.; Wei, D.H.; Liu, R.S.; Hsiao, M. An advanced in situ magnetic resonance imaging and ultrasonic theranostics nanocomposite platform: Crossing the blood-brain barrier and improving the suppression of glioblastoma using iron-platinum nanoparticles in nanobubbles. ACS Appl. Mater. Interfaces, 2021, 13(23), 26759-26769. doi: 10.1021/acsami.1c04990 PMID: 34076419
  71. Alam, M.A.; Al Riyami, K. Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates. Constr. Build. Mater., 2018, 162, 683-696. doi: 10.1016/j.conbuildmat.2017.12.011
  72. Yang, M.; Zhang, N.; Zhang, T.; Yin, X.; Shen, J. Fabrication of doxorubicin-gated mesoporous polydopamine nanoplatforms for multimode imaging-guided synergistic chemophotothermal therapy of tumors. Drug Deliv., 2020, 27(1), 367-377. doi: 10.1080/10717544.2020.1730523 PMID: 32091284
  73. Chen, S.; Liu, Y.; Zhu, S.; Chen, C.; Xie, W.; Xiao, L.; Zhu, Y.; Hao, L.; Wang, Z.; Sun, J.; Chang, S. Dual-mode imaging and therapeutic effects of drug-loaded phase-transition nanoparticles combined with near-infrared laser and low-intensity ultrasound on ovarian cancer. Drug Deliv., 2018, 25(1), 1683-1693. doi: 10.1080/10717544.2018.1507062 PMID: 30343601
  74. Ben, O. The dose threshold for nanoparticle tumour delivery. Nat. Mater., 2020, 19(12), 1362-1371.
  75. Wang, Y.; Lan, M.; Shen, D.; Fang, K.; Zhu, L.; Liu, Y.; Hao, L.; Li, P. Targeted nanobubbles carrying indocyanine green for ultrasound, photoacoustic and fluorescence imaging of prostate cancer. Int. J. Nanomedicine, 2020, 15, 4289-4309. doi: 10.2147/IJN.S243548 PMID: 32606678
  76. Perera, R.H.; de Leon, A.; Wang, X.; Wang, Y.; Ramamurthy, G.; Peiris, P.; Abenojar, E.; Basilion, J.P.; Exner, A.A. Real time ultrasound molecular imaging of prostate cancer with PSMA-targeted nanobubbles. Nanomedicine, 2020, 28, 102213. doi: 10.1016/j.nano.2020.102213 PMID: 32348874
  77. Zhang, J.; Chen, Y.; Deng, C.; Zhang, L.; Sun, Z.; Wang, J.; Yang, Y.; Lv, Q.; Han, W.; Xie, M. The optimized fabrication of a novel nanobubble for tumor imaging. Front. Pharmacol., 2019, 10, 610. doi: 10.3389/fphar.2019.00610 PMID: 31214033
  78. Duan, S.; Guo, L.; Shi, D.; Shang, M.; Meng, D.; Li, J. Development of a novel folate-modified nanobubbles with improved targeting ability to tumor cells. Ultrason. Sonochem., 2017, 37, 235-243. doi: 10.1016/j.ultsonch.2017.01.013 PMID: 28427629
  79. Gao, Y.; Hernandez, C.; Yuan, H.X.; Lilly, J.; Kota, P.; Zhou, H.; Wu, H.; Exner, A.A. Ultrasound molecular imaging of ovarian cancer with CA-125 targeted nanobubble contrast agents. Nanomedicine, 2017, 13(7), 2159-2168. doi: 10.1016/j.nano.2017.06.001 PMID: 28603079
  80. VanOsdol, J.; Ektate, K.; Ramasamy, S.; Maples, D.; Collins, W.; Malayer, J.; Ranjan, A. Sequential HIFU heating and nanobubble encapsulation provide efficient drug penetration from stealth and temperature sensitive liposomes in colon cancer. J. Control. Release, 2017, 247, 55-63. doi: 10.1016/j.jconrel.2016.12.033 PMID: 28042085
  81. Perera, R.H.; Hernandez, C.; Zhou, H.; Kota, P.; Burke, A.; Exner, A.A. Ultrasound imaging beyond the vasculature with new generation contrast agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(4), 593-608. doi: 10.1002/wnan.1326 PMID: 25580914
  82. de Leon, A.; Perera, R.; Hernandez, C.; Cooley, M.; Jung, O.; Jeganathan, S.; Abenojar, E.; Fishbein, G.; Sojahrood, A.J.; Emerson, C.C.; Stewart, P.L.; Kolios, M.C.; Exner, A.A. Contrast enhanced ultrasound imaging by nature-inspired ultrastable echogenic nanobubbles. Nanoscale, 2019, 11(33), 15647-15658. doi: 10.1039/C9NR04828F PMID: 31408083
  83. Wu, H.; Abenojar, E.C.; Perera, R.; De Leon, A.C.; An, T.; Exner, A.A. Time-intensity-curve analysis and tumor extravasation of nanobubble ultrasound contrast agents. Ultrasound Med. Biol., 2019, 45(9), 2502-2514. doi: 10.1016/j.ultrasmedbio.2019.05.025 PMID: 31248638
  84. Pellow, Carly Threshold-dependent nonlinear scattering from porphyrin nanobubbles for vascular and extravascular applications. Phys. Med. Biol., 2018, 63(21), 215001. doi: 10.1088/1361-6560/aae571
  85. Jafari, S. Theoretical and experimental investigation of the nonlinear dynamics of nanobubbles excited at clinically relevant ultrasound frequencies and pressures: The role oflipid shell buckling. 2017 IEEE International Ultrasonics Symposium (IUS)., Washington, DC, USA, 06-09 Sep, 2017
  86. Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385. doi: 10.3322/caac.21565 PMID: 31184787
  87. Ramazanov, M.; Karimova, A.; Shirinova, H. Magnetism for drug delivery, MRI and hyperthermia applications: A review. Biointerface Res. Appl. Chem., 2021, 11, 8654-8668.
  88. Gao, Y.; Ma, Q.; Cao, J.; Shi, Y.; Wang, J.; Ma, H.; Sun, Y.; Song, Y. Bifunctional alginate/chitosan stabilized perfluorohexane nanodroplets as smart vehicles for ultrasound and pH responsive delivery of anticancer agents. Int. J. Biol. Macromol., 2021, 191, 1068-1078. doi: 10.1016/j.ijbiomac.2021.09.166 PMID: 34600955
  89. Zhang, L.; Yin, T.; Li, B.; Zheng, R.; Qiu, C.; Lam, K.S.; Zhang, Q.; Shuai, X. Size-modulable nanoprobe for high-performance ultrasound imaging and drug delivery against cancer. ACS Nano, 2018, 12(4), 3449-3460. doi: 10.1021/acsnano.8b00076 PMID: 29634240
  90. Nakamura, Y.; Mochida, A.; Choyke, P.L.; Kobayashi, H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem., 2016, 27(10), 2225-2238. doi: 10.1021/acs.bioconjchem.6b00437 PMID: 27547843
  91. Tosetti, F.; Ferrari, N.; De Flora, S.; Albini, A. ‘Angioprevention’: Angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J., 2002, 16(1), 2-14. doi: 10.1096/fj.01-0300rev PMID: 11772931
  92. Li, H.; Wu, Z.; Zhang, J.; Sun, X.; Duan, F.; Yao, J.; Sun, M.; Zhang, J.; Nie, L. Instant ultrasound-evoked precise nanobubble explosion and deep photodynamic therapy for tumors guided by molecular imaging. ACS Appl. Mater. Interfaces, 2021, 13(18), 21097-21107. doi: 10.1021/acsami.1c05517 PMID: 33908256
  93. Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis. Model. Mech., 2017, 10(5), 499-502. doi: 10.1242/dmm.030205 PMID: 28468935
  94. Lee, B.E.; Kim, H.Y.; Kim, H.J.; Jeong, H.; Kim, B.G.; Lee, H.E.; Lee, J.; Kim, H.B.; Lee, S.E.; Yang, Y.R.; Yi, E.C.; Hanover, J.A.; Myung, K.; Suh, P.G.; Kwon, T.; Kim, J.I. O-GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease. Brain, 2020, 143(12), 3699-3716. doi: 10.1093/brain/awaa320 PMID: 33300544
  95. Kinfe, T.; Stadlbauer, A.; Winder, K.; Hurlemann, R.; Buchfelder, M. Incisionless MR-guided focused ultrasound: Technical considerations and current therapeutic approaches in psychiatric disorders. Expert Rev. Neurother., 2020, 20(7), 687-696. doi: 10.1080/14737175.2020.1779590 PMID: 32511043
  96. Yan, Y.; Chen, Y.; Liu, Z.; Cai, F.; Niu, W.; Song, L.; Liang, H.; Su, Z.; Yu, B.; Yan, F. Brain delivery of curcumin through low-intensity ultrasound-induced blood–brain barrier opening via lipid-plga nanobubbles. Int. J. Nanomedicine, 2021, 16, 7433-7447. doi: 10.2147/IJN.S327737 PMID: 34764649
  97. Suzuki, R.; Oda, Y.; Omata, D.; Nishiie, N.; Koshima, R.; Shiono, Y.; Sawaguchi, Y.; Unga, J.; Naoi, T.; Negishi, Y.; Kawakami, S.; Hashida, M.; Maruyama, K. Tumor growth suppression by the combination of nanobubbles and ultrasound. Cancer Sci., 2016, 107(3), 217-223. doi: 10.1111/cas.12867 PMID: 26707839
  98. Maranhão, R.; Leite, A., Jr Development of anti-atherosclerosis therapy based on the inflammatory and proliferative aspects of the disease. Curr. Pharm. Des., 2015, 21(9), 1196-1204. doi: 10.2174/1381612820666141013150714 PMID: 25312729
  99. Dong, L.; Li, N.; Wei, X.; Wang, Y.; Chang, L.; Wu, H.; Song, L.; Guo, K.; Chang, Y.; Yin, Y.; Pan, M.; Shen, Y.; Wang, F. A gambogic acid-loaded delivery system mediated by ultrasound-targeted microbubble destruction: A promising therapy method for malignant cerebral glioma. Int. J. Nanomedicine, 2022, 17, 2001-2017. doi: 10.2147/IJN.S344940 PMID: 35535034
  100. Devulapally, R.; Lee, T.; Barghava-Shah, A.; Sekar, T.V.; Foygel, K.; Bachawal, S.V.; Willmann, J.K.; Paulmurugan, R. Ultrasound-guided delivery of thymidine kinase–nitroreductase dual therapeutic genes by PEGylated-PLGA/PEI nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine, 2018, 13(9), 1051-1066. doi: 10.2217/nnm-2017-0328 PMID: 29790803
  101. Tan, J.K.Y.; Pham, B.; Zong, Y.; Perez, C.; Maris, D.O.; Hemphill, A.; Miao, C.H.; Matula, T.J.; Mourad, P.D.; Wei, H.; Sellers, D.L.; Horner, P.J.; Pun, S.H. Microbubbles and ultrasound increase intraventricular polyplex gene transfer to the brain. J. Control. Release, 2016, 231, 86-93. doi: 10.1016/j.jconrel.2016.02.003 PMID: 26860281
  102. Manta, S.; Renault, G.; Delalande, A.; Couture, O.; Lagoutte, I.; Seguin, J.; Lager, F.; Houzé, P.; Midoux, P.; Bessodes, M.; Scherman, D.; Bureau, M.F.; Marie, C.; Pichon, C.; Mignet, N. Cationic microbubbles and antibiotic-free miniplasmid for sustained ultrasound–mediated transgene expression in liver. J. Control. Release, 2017, 262, 170-181. doi: 10.1016/j.jconrel.2017.07.015 PMID: 28710005
  103. Endo-Takahashi, Yoko Efficient siRNA delivery using novel siRNA-loaded Bubble liposomes and ultrasound. Int. J. Pharm., 2012, 422(1-2), 504-509. doi: 10.1016/j.ijpharm.2011.11.023
  104. Endo-Takahashi, Yoko; Negishi, Yoichi Microbubbles and nanobubbles with ultrasound for systemic gene delivery. Pharmaceutics, 2020, 12(10), 964. doi: 10.3390/pharmaceutics12100964
  105. Song, Z.; Ye, Y.; Zhang, Z.; Shen, J.; Hu, Z.; Wang, Z.; Zheng, J. Noninvasive, targeted gene therapy for acute spinal cord injury using LIFU-mediated BDNF-loaded cationic nanobubble destruction. Biochem. Biophys. Res. Commun., 2018, 496(3), 911-920. doi: 10.1016/j.bbrc.2018.01.123 PMID: 29360450
  106. Zhou, Q.; Deng, Q.; Hu, B.; Wang, Y.J.; Chen, J.L.; Cui, J.J.; Cao, S.; Song, H.N. Ultrasound combined with targeted cationic microbubble-mediated angiogenesis gene transfection improves ischemic heart function. Exp. Ther. Med., 2017, 13(5), 2293-2303. doi: 10.3892/etm.2017.4270 PMID: 28565841
  107. Belcik, J.T.; Davidson, B.P.; Xie, A.; Wu, M.D.; Yadava, M.; Qi, Y.; Liang, S.; Chon, C.R.; Ammi, A.Y.; Field, J.; Harmann, L.; Chilian, W.M.; Linden, J.; Lindner, J.R. Augmentation of muscle blood flow by ultrasound cavitation is mediated by ATP and purinergic signaling. Circulation, 2017, 135(13), 1240-1252. doi: 10.1161/CIRCULATIONAHA.116.024826 PMID: 28174191
  108. Li, Hairui Diagnostic ultrasound and microbubbles treatment improves outcomes of coronary no-reflow in canine models by sonothrombolysis. Crit. Care Med., 2018, 46(9), e912. doi: 10.1097/CCM.0000000000003255
  109. Wang, C-H. Method and device for producing optimized lipidbased micro/nano-bubbles. U.S. Patent 9687570B2, 2022.
  110. Hernandez, A.E.P. Stabilized crosslinked nanobubbles for diagnostic and therapeutic applications. W.O. Patent 2017210612A1, 2022.
  111. Shailubhai, V.P. Compositions and method for the treatment and detection of colon cancer. C.A. Patent 3001727A1, 2022.
  112. Wu, D.L. Multifunctional chemo- and mechanical therapeutics. W.O. Patent 2015163841A9, 2022.
  113. Ultrasound-driven drug delivery platforms by the use of nanobubbles water prepared with drug-conjugated phospholipids via ester bonds and preparation method thereof. K.R. Patent 20200105299A, 2022.
  114. Durmaz, M.E-S.Y.Y. Polymeric nanoparticles for ultrasound imaging and therapy. U.S. Patent 9415123B2, 2022.
  115. Nittayacharn, A.E. Stabilized nanobubbles and microbubbles for diagnostic and therapeutic applications. E.P. Patent 3773752A1, 2022.
  116. Oxford, U.o. Do Nanobubbles Improve Joint Hypoxia? N.C. Patent T04844008, 2022.
  117. University of California. Micro/Nanobubbles (MNBs) for Treatment of Acute and Chronic Wounds. N.C. Patent T05169814, 2022.
  118. Medicine, L.S. Feasibility of the vapor nanobubble technology for malaria diagnostics (malariasense). N.C. Patent T02672228, 2022.
  119. Carolina, M.U.S. CEUS for intraoperative spinal cord injury. N.C. Patnet T05530798, 2022.
  120. Research, M.N. The effect of RNS60 on ALS Biomarkers (RNS60). N.C. Patent T03456882, 2022.
  121. Wang, Ye Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery. Int. J. Pharm., 2010, 384(1-2), 148-153. doi: 10.1016/j.ijpharm.2009.09.027
  122. Jin, J.; Yang, L.; Chen, F.; Gu, N. Drug delivery system based on nanobubbles. Interdiscip. Mater., 2022, 1(4), 471-494. doi: 10.1002/idm2.12050
  123. Babu, K.S.; Amamcharla, J.K. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: A review and future perspective. Crit. Rev. Food Sci. Nutr., 2022, 1-20. doi: 10.1080/10408398.2022.2067119 PMID: 35467989
  124. Gupta, Vaibhav Nanotechnology in cosmetics and cosmeceuticals-A review of latest advancements. Gels, 2022, 8(3), 173. doi: 10.3390/gels8030173
  125. Alheshibri, M.; Craig, V.S.J. Differentiating between nanoparticles and nanobubbles by evaluation of the compressibility and density of nanoparticles. J. Phys. Chem. C, 2018, 122(38), 21998-22007. doi: 10.1021/acs.jpcc.8b07174
  126. Younis, S.A.; Kim, K-H.; Shaheen, S.M.; Antoniadis, V.; Tsang, Y.F.; Rinklebe, J.; Deep, A.; Brown, R.J.C. Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies. Renew. Sustain. Energy Rev., 2021, 152, 111686. doi: 10.1016/j.rser.2021.111686

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024