Cluster Ion Treatment of the Surface of Single-Crystal Silicon and Germanium at an Angle of 60°

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The formation of self-ordered nanostructures on the surface of single-crystal silicon and germanium using cluster ion treatment is considered. Low-energy argon cluster ions are used for more efficient nanostructuring of the target surface. Using an atomic force microscope, the morphology of the target surface is analyzed before and after treatment with an argon cluster ion beam. It is shown that the treatment with low-energy argon cluster ions at an incidence angle of 60° relative to the surface normal leads to effective nanostructuring of the silicon and germanium surface at an etching depth commensurate with the amplitude of the nanostructures. The roughness parameters (root mean square roughness and total roughness) of the original and processed target surfaces are given. The period and amplitude of the nanostructures formed on the surfaces of silicon and germanium are compared. It has been determined that for an ion fluence of 1 × 1015 cm–2, the period of nanostructures on the surfaces of single-crystal silicon and germanium is about 200 nm, in the case of germanium, the period is larger. The amplitude of nanostructures on the surface of silicon and germanium is about 65 and 50 nm, respectively. After treatment with argon cluster ions, a more developed surface of monocrystalline silicon is formed compared to germanium.

全文:

受限制的访问

作者简介

I. Nikolaev

Novosibirsk State University

编辑信件的主要联系方式.
Email: i.nikolaev@nsu.ru
俄罗斯联邦, Novosibirsk

N. Korobeyshchikov

Novosibirsk State University

Email: korobei@nsu.ru
俄罗斯联邦, Novosibirsk

A. Lapega

Novosibirsk State University

Email: i.nikolaev@nsu.ru
俄罗斯联邦, Novosibirsk

参考

  1. Bao S.Y., Wang Y., Lina K., Zhang L., Wang B., Sasangka W.A., Lee K.E.K., Chua S.J., Michel J., Fitzgerald E., Tan C.S., Lee K.H. // J. Semicond. 2021. V. 42. № 2. Р. 023106. https://doi.org/10.1088/1674-4926/42/2/023106
  2. Haller E.E. // Mater. Sci. Semicond. Process. 2006. V. 8. Iss. 4–5. P. 408. https://doi.org/10.1016/j.mssp.2006.08.063
  3. Toriumi A., Nishimura T. // Jpn. J. Appl. Phys. 2018. V. 57. № 1. P. 010101. https://doi.org/10.7567/JJAP.57.010101
  4. Chason E., Mayer T.M., Kellerman B.K., McIlroy D.T., Howard A.J. // Phys. Rev. Lett. 1994. V. 72. P. 3040. https://doi.org/10.1103/PhysRevLett.72.3040
  5. Ziberi B., Cornejo M., Frost F., Rauschenbach B. // J. Phys.: Condens. Matter. 2009. V. 21. Р. 224003. https://doi.org/10.1088/0953-8984/21/22/224003
  6. Teichmann M., Lorbeer J., Ziberi B., Frost F., Rauschenbach B. // New J. Phys. 2013. V. 15. Р. 103029. https://doi.org/10.1088/1367-2630/15/10/103029
  7. Perkinson J.C., Madi C.S., Aziz M.J. // J. Vac. Sci. Technol. A. 2013. V. 31. Р. 021405. http://doi.org/10.1116/1.4792152
  8. Lopez-Cazalilla A., Chowdhury D., Ilinov A., Mondal S., Barman P., Bhattacharyya S.R., Ghose D., Djurabekova F., Nordlund K., Norris S. // J. Appl. Phys. 2018. V. 123. Р. 235108. https://doi.org/10.1063/1.5026447
  9. Toyoda N., Yamada I. // AIP Conf. Proc. 2006. V. 866. P. 210. https://doi.org/10.1063/1.2401497
  10. Popok V.N., Barke I., Campbell E.E.B., Meiwes-Broer K.-H. // Surf. Sci. Rep. 2011. V. 66. P. 347. https://doi.org/10.1016/j.surfrep.2011.05.002
  11. Yamada I. // Materials Processing by Cluster ion Beams: History, Technology, and Applications. Boca Raton, Florida: CRC Press, 2016.
  12. Иешкин A.E., Толстогузов А.Б., Коробейщиков Н.Г., Пеленович В.О., Черныш В.С. // Успехи физических наук. 2021. Т. 192. C. 722. https://doi.org/10.3367/UFNr.2021.06.038994 (Ieshkin A.E., Tolstoguzov A.B., Korobeishchikov N.G., Pelenovich V.O., Chernysh V.S. // Phys. Usp. 2022. V. 65. P. 677. https://doi.org/10.3367/UFNe.2021.06.038994).
  13. Korobeishchikov N.G., Nikolaev I.V., Roenko M.A., Atuchin V.V. // Appl. Phys. A. 2018. V. 124. P. 833. https://doi.org/10.1007/s00339-018-2256-3
  14. Korobeishchikov N.G., Nikolaev I.V., Atuchin V.V., Prosvirin I.P., Kapishnikov A.V., Tolstogouzov A., Fu D.J. // Mater. Res. Bull. 2023. V. 158. Р. 112082. https://doi.org/10.1016/j.materresbull.2022.112082
  15. Ieshkin A.E., Kireev D.S., Ermakov Yu.A., Trifonov A.S., Presnov D.E., Garshev A.V., Anufriev Yu.V., Prokhorova I.G., Krupenin V.A., Chernysh V.S. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 421. P. 27. https://doi.org/10.1016/j.nimb.2018.02.019
  16. Teo E.J., Toyoda N., Yang C., Bettiol A.A., Teng J.H. // Appl. Phys. A. 2014. V. 117. P. 719. https://doi.org/10.1007/s00339-014-8728-1
  17. Коробейщиков Н.Г., Николаев И.В., Роенко М.А. // ПЖТФ. 2019. Т. 45, № 6. С. 30. https://doi.org/10.21883/PJTF.2019.06.47496.17646 (Korobeishchikov N.G., Nikolaev I.V., Roenko M.A. // Tech. Phys. Lett. 2019. V. 45. No.3. P. 274. https://doi.org/10.1134/S1063785019030295).
  18. Korobeishchikov N.G., Nikolaev I.V., Roenko M.A. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 438. P. 1. https://doi.org/10.1016/j.nimb.2018.10.019
  19. Lozano O., Chen Q.Y., Tilakaratne B.P., Seo H.W., Wang X.M., Wadekar P.V., Chinta P.V., Tu L.W., Ho N.J., Wijesundera D., Chu W.K. // AIP Adv. 2013. V. 3. Р. 062107. https://doi.org/10.1063/1.4811171
  20. Sumie K., Toyoda N., Yamada I. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 307. P. 290. http://doi.org/10.1016/j.nimb.2013.01.087
  21. Tilakaratne B.P., Chen Q.Y., Chu W.K. // Materials. 2017. V. 10. Р. 1056. https://doi.org/10.3390/ma10091056
  22. Toyoda N., Tilakaratne B., Saleem I., Chu W.K. // Appl. Phys. Rev. 2019. V. 6. Р. 020901. https://doi.org/10.1063/1.5030500
  23. Zeng X., Pelenovich V., Xing B., Rakhimov R., Zuo W., Tolstogouzov A., Liu C., Fu D., Xiao X. // Beilstein J. Nanotechnol. 2020. V. 11. P. 383. https://doi.org/10.3762/bjnano.11.29
  24. Pelenovich V., Zeng X., Rakhimov R., Zuo W., Tian C., Fu D., Yang B. // Mater. Lett. 2020. V. 264. Р. 127356. https://doi.org/10.1016/j.matlet.2020.127356
  25. Ieshkin A., Kireev D., Ozerova K., Senatulin B. // Mater. Lett. 2020. V. 272. Р. 127829. https://doi.org/10.1016/j.matlet.2020.127829
  26. Kireev D.S., Ryabtsev M.O., Tatarintsev A.A., Ieshkin A.E. // Nucl. Instrum. Methods Phys. Res. B. 2022. V. 520. P. 8. https://doi.org/10.1016/j.nimb.2022.03.017
  27. Иешкин А.Е., Ильина Т.С., Киселев Д.А., Сенатулин Б.Р., Скрылева Е.А., Suchaneck G., Пархоменко Ю.Н. // Физика твердого тела. 2022. Т. 64, Вып. 10. С. 1489. https://doi.org/10.21883/FTT.2022.10.53095.384 (Ieshkin A.E., Ilina T.S., Kiselev D.A., Senatulin B.R., Skryleva E.A., Suchaneck G., Parkhomenko Yu.N.//Phys. Solid State. 2022. V. 64. Iss. 10. P. 1465. https://doi.org/10.21883/PSS.2022.10.54237.384).
  28. Nikolaev I.V., Korobeishchikov N.G. // Applied Nano. 2021. V. 2. P. 25. https://doi.org/10.3390/applnano2010003
  29. Kirkpatrick A., Kirkpatrick S., Walsh M., Chau S., Mack M., Harrison S., Svrluga R., Khoury J. //Nucl. Instrum. Methods Phys. Res. B. 2013. V. 307. P. 281. https://doi.org/10.1016/j.nimb.2012.11.084

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. 3D AFM images of the original (a, c) and nanostructured (b, d) surface of single-crystal Si (a, b) and Ge (c, d) samples, area size 2 × 2 μm.

下载 (523KB)

版权所有 © Russian Academy of Sciences, 2025