Changes in the Spectral Characteristics of Some Polymeric Materials in the Frequency Range from 0.2 to 2 THz as a Result of Exposure to a Megawatt Flux of Submillimeter Radiation of Microsecond Duration
- 作者: Arzhannikov A.V.1, Sinitsky S.L.1, Samtsov D.A.1, Kalinin P.V.1, Kuznetsov S.A.1, Stepanov V.D.1, Popov S.S.1, Sandalov E.S.1, Atlukhanov M.G.1, Stankevich A.V.2,3, Pestov A.V.3, Nikolaev N.A.4, Rybak A.A.4
-
隶属关系:
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences
- Zababakhin All-Russia Research Institute of Technical Physics
- Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences
- Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences
- 期: 编号 2 (2025)
- 页面: 3-11
- 栏目: Articles
- URL: https://vietnamjournal.ru/1028-0960/article/view/686767
- DOI: https://doi.org/10.31857/S1028096025020014
- EDN: https://elibrary.ru/EGXKAS
- ID: 686767
如何引用文章
详细
The effect of exposure to pulsed megawatt submillimeter (0.1–0.4 THz) radiation fluxes on the spectral characteristics of some thin-film polymer materials in the frequency range from 0.2 to 2 THz has been registered. The polymer samples have been characterized using technical solutions within the framework of time-domain-spectroscopy and BWO spectroscopy. For the exposure, a radiation flux in the submillimeter wavelength range with duration of about 4 μs generated during beam-plasma interaction at the GOL–PET facility (BINP SB RAS) has been used. Relative changes in the real part of the permittivity of individual polyvinylidene fluoride samples is found to reach a level of 0.5 with an initial value of about 3.0, while for polyvinyl chloride samples no changes in this parameter have been registered. At the same time, for polyurea individual samples, both significant changes in this parameter and its insignificant changes as a result of exposure have been observed. The results of the experiments provide a basis for using thin-film polymeric materials as substrates for samples of supramolecular complexes, which during research will be exposed to powerful pulsed radiation fluxes in the submillimeter wavelength range.
全文:

作者简介
A. Arzhannikov
Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Novosibirsk
S. Sinitsky
Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Novosibirsk
D. Samtsov
Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Novosibirsk
P. Kalinin
Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Novosibirsk
S. Kuznetsov
Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Novosibirsk
V. Stepanov
Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Novosibirsk
S. Popov
Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Novosibirsk
E. Sandalov
Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Novosibirsk
M. Atlukhanov
Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Novosibirsk
A. Stankevich
Zababakhin All-Russia Research Institute of Technical Physics; Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Snezhinsk; Ekaterinburg
A. Pestov
Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Ekaterinburg
N. Nikolaev
Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Novosibirsk
A. Rybak
Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences
Email: A.V.Arzhannikov@inp.nsk.su
俄罗斯联邦, Novosibirsk
参考
- Fischer B.M., Helm H., Jepsen P.U. // Proc. SPIE. 2006. V. 6038. P. 42. https://doi.org/10.1117/12.651748
- Reimann K., Woerner M., Elsaesser T. // J. Chem. Phys. 2021. V. 154. № 12. P. 120901. https://doi.org/10.1063/5.0046664
- Surovtsev N.V., Malinovsky V.K., Boldyreva E.V. // J. Chem. Phys. 2011. V. 134. № 4. P. 045102. https://doi.org/10.1063/1.3524342
- Afsah-Hejri L., Hajeb P., Ara P., Ehsani R.J. // Compr. Rev. Food Sci. Food Safety. 2019. V. 18. № 5. P. 1563. https://doi.org/10.1111/1541-4337.12490
- Folpini G., Reimann K., Woerner M., Elsaesser T., Hoja J., Tkatchenko A. // Phys. Rev. Lett. 2017. V. 119. № 9. P. 097404. https://doi.org/10.1103/PhysRevLett.119.097404
- Michalchuk A.A.L., Fincham P.T., Portius P., Pulham C.R., Morrison C.A. // J. Phys. Chem. C. 2018. V. 122. № 34. P. 19395. https://doi.org/10.1021/acs.jpcc.8b05285
- Michalchuk A.A.L. Trestman M., Rudić S., Portius P., Fincham P.T., Pulham C.R., Morrison C.A. // J. Mater. Chem. A. 2019. V. 7. № 33. P. 19539. https://doi.org/10.1039/c9ta06209b
- Michalchuk A.A.L., Hemingway J., Morrison C.A. // J. Chem. Phys. 2021. V. 154. № 6. P. 064105. https://doi.org/10.1063/5.0036927
- Michalchuk A.A.L., Morrison C.A. // Theor. Comput. Chem. 2022. V. 22. P. 215. https://doi.org/10.1016/B978-0-12-822971-2.00010-3
- Stankevich A.V., Taibinov N.P., Kostitsyn O.V., Garmashev A.Yu. // J. Phys.: Conf. Ser. 2021. V. 1787. № 1. P. 012006. https://doi.org/10.1088/1742-6596/1787/1/012006
- Stankevich A.V., Tolshchina S.G., Korotina A.V., Rusinov G.L., Chemagina I.V., Charushin V.N. // Molecules. 2022. V. 27. № 20. P. 6966. https://doi.org/10.3390/molecules27206966
- Arzhannikov A.V., Burdakov A.V., Kalinin P.V. et al. // Vestnik Novosibirsk State University. Ser. Phys. 2010. V. 5. № 4. P. 44.
- Arzhannikov A.V. Burmasov V.S., Ivanov I.A., Kalinin P.V., Kuznetsov S.A., Makarov M.A., Mekler K.I., Polosatkin S.V., Rovenskikh A.F., Samtsov D.A., Sinitsky S.L., Stepanov V.D., Timofeev I.V. // 44th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Paris, 2019. P. 1. https://doi.org/10.1109/IRMMW-THz.2019.8874408
- Arzhannikov A.V., Ivanov I.A., Kasatov A.A., Kuznetsov S.A., Makarov M.A., Mekler K.I., Polosatkin S.V., Popov S.S., Rovenskikh A.F., Samtsov D.A., Sinitsky S.L., Stepanov V.D., Annenkov V.V., Timofeev I.V. // Plasma Phys. Controlled Fusion. 2020. V. 62. № 4. P. 045002. https://doi.org/10.1088/1361-6587/ab72e3
- Arzhannikov A.V., Sinitsky, S.L., Popov S.S., Timofeev I.V., Samtsov D.A., Sandalov E.S., Kalinin P.V., Kuklin, K.N., Makarov M.A., Rovenskikh A.F., Stepanov V.D., Annenkov V.V., Glinsky V.V. // IEEE Trans. on Plasma Sci. 2022. V. 50. № 8. P. 2348. https://doi.org/10.1109/TPS.2022.3183629
- Аржанников А.В., Синицкий С.Л., Самцов Д.А., Калинин П.В., Попов С.С., Атлуханов М.Г., Сандалов Е.С., Степанов В.Д., Куклин К.Н., Макаров М.А. // Сиб. физ. журнал. 2023. Т. 18. № 4. С. 79. https://doi.org/10.25205/2541-9447-2023-18-4-79-93
- Mamrashev A., Minakov F., Nikolaev N., Antsygin V. // Photonics. 2021. V. 8. № 6. P. 213. https://doi.org/10.3390/photonics8060213
- Mamrashev A.A., Maximov L.V., Nikolaev N.A., Chapovsky P.L. // IEEE Trans. Terahertz Sci. Tech. 2018. V. 8. № 1. P. 13. https://doi.org/10.1109/TTHZ.2017.2764385
- Кузнецов С.А., Астафьев М.А., Скляров В.Ф., Лазорский П.А., Аржанников А.В. // Вестн. НГУ. Сер. Физика. 2014. Т. 9. № 4. C. 15. https://doi.org/10.54362/1818-7919-2014-9-4-15-38
- Станкевич А.В., Соболевская А.В., Грецова А.Н., Стрельцова М.С., Фролова О.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. Т. 10. С. 3. https://doi.org/10.31857/S1028096023100205
- Семчиков Ю.Д., Жильцов С.Ф., Зайцев С.Д. Введение в химию полимеров: Учебное пособие. СПб.: Лань, 2014. 224 c.
补充文件
