Study of the Influence of Ferromagnetic Impurity Concentration on Magnetic Properties of Binary Palladium–Cobalt Alloy
- Autores: Gumarova I.I.1, Gumarov A.I.1, Yanilkin I.V.1
 - 
							Afiliações: 
							
- Kazan Federal University
 
 - Edição: Nº 5 (2024)
 - Páginas: 24-28
 - Seção: Articles
 - URL: https://vietnamjournal.ru/1028-0960/article/view/664638
 - DOI: https://doi.org/10.31857/S1028096024050041
 - EDN: https://elibrary.ru/FUMGCX
 - ID: 664638
 
Citar
Texto integral
Resumo
A comparative study of the magnetic properties of a palladium–cobalt alloy with an impurity content of up to 0.05 at. % was made using calculations based on the density functional theory and experimental methods. It was found that the alloys had ferromagnetic ordering, which depended on the impurity concentration. At very low concentrations, less than 1 at. %, the magnetic moment per impurity atom can reach 25 µB.
Palavras-chave
Texto integral
Sobre autores
I. Gumarova
Kazan Federal University
							Autor responsável pela correspondência
							Email: iipiyanzina@kpfu.ru
				                					                																			                												                	Rússia, 							Kazan						
A. Gumarov
Kazan Federal University
														Email: iipiyanzina@kpfu.ru
				                					                																			                												                	Rússia, 							Kazan						
I. Yanilkin
Kazan Federal University
														Email: iipiyanzina@kpfu.ru
				                					                																			                												                	Rússia, 							Kazan						
Bibliografia
- Fallot M. // Ann. Phys. 1938. V. 11. P. 291. https://www.doi.org/10.1051/anphys/193811100291
 - Crangle J. // Philos. Mag. 1960. V. 5. P. 335. https://www.doi.org/10.1080/14786436008235850
 - Nieuwenhuys G.J. // Adv. Phys. 1975. V. 24. P. 515. https://www.doi.org/10.1080/00018737500101461
 - Bagguley D.M.S, Robertson J.A. // J. Phys. F: Met. Phys. 1974.V. 4. P. 2282. https://www.doi.org/10.1088/0305-4608/4/12/023
 - Bagguley D.M.S, Crossley W.A., Liesegang J. // Proc. Phys. Soc. 1967. V. 90. P. 1047. https://www.doi.org/10.1088/0370-1328/90/4/316
 - Рязанов В.В. // УФН. 1999. Т. 169. С. 920. https://www.doi.org/10.3367/UFNr.0169.199908g.0920
 - Larkin T.I., Bol’ginov V.V., Stolyarov V.S, Ryazanov V.V., Vernik I.V., Tolpygo S.K., Mukhanov OA. // Appl. Phys. Lett. 2012. V. 100. P. 222601. https://www.doi.org/10.1063/1.4723576
 - Soloviev I.I., Klenov N.V., Bakurskiy S.V., Kupriyanov M.Y., Gudkov A.L., Sidorenko A.S. // Beilstein J. Nanotechnol. 2017. V. 8. P. 2689. https://www.doi.org/10.3762/bjnano.8.269
 - Esmaeili A., Yanilkin I.V., Gumarov A.I., Vakhitov I.R., Yusupov R.V., Tatarsky D.A., Tagirov L.R. // Sci. China Mater. 2021. V. 64. P. 1246. https://www.doi.org/10.1007/s40843-020-1479-0
 - Mohammed W.M., Yanilkin I.V., Gumarov A.I., Kiiamov A.G., Yusupov R.V., Tagirov L.R. // Beilstein J. Nanotechnol. 2020. V.11. P. 807. https://www.doi.org/10.3762/bjnano.11.65
 - Yanilkin I.V., Mohammed W.M., Gumarov A.I., Kiia-mov A.G., Yusupov R.V., Tagirov L.R. // Nanomaterials 2021. V. 11. P. 64. https://www.doi.org/10.3390/nano11010064
 - Gumarov A.I., Yanilkin I.V., Yusupov R.V., Kiiamov A.G., Tagirov L.R., Khaibullin R.I. // Mater. Lett. 2021. V. 305. P. 130783. https://www.doi.org/10.1016/j.matlet.2021.130783
 - Gumarov A.I., Yanilkin I.V., Rodionov A.A., Gabbasov B.F., Yusupov R.V., Aliyev M.N., Tagirov L.R. // Appl. Magn. Reson. 2022. V. 53. P. 875. https://www.doi.org/10.1007/s00723-022-01464-0
 - Hohenberg P., Kohn W. // Phys. Rev. 1964. V. 136. P. B864. https://www.doi.org/10.1103/PhysRev.136.B864
 - Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. P. A1133. https://www.doi.org/10.1103/PhysRev.140.A1133
 - Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://www.doi.org/10.1103/PhysRevLett.77.3865
 - Blöchl P.E. // Phys. Rev. B. 1994. V. 50. P. 17953. https://www.doi.org/10.1103/PhysRevB.50.17953
 - Kresse G., Furthmüller J. // Comp. Mater. Sci. 1996. V. 6. P. 15. https://www.doi.org/10.1016/0927-0256(96)00008-0
 - Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54 P. 11169. https://www.doi.org/10.1103/PhysRevB.54.11169
 - Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758. https://www.doi.org/10.1103/PhysRevB.59.1758
 - MedeA version 3.7; MedeA is a registered trademark of Materials Design, Inc., San Diego, USA.
 - Dudarev S.L., Botton G.A., Savrasov S.Y., Humphreys C.J., Sutton A.P. // Phys. Rev. B. 1998. V. 57. № 3. P. 1505. https://www.doi.org/10.1103/PhysRevB.57.1505
 - Calderon C.E., Plata J.J., Toher C. et al. // Comp. Mater. Sci. 2015. V. 108. P. 233. https://www.doi.org/10.1016/j.commatsci.2015.07.019
 - Piyanzina I., Gumarov A., Khaibullin R., Tagirov L. // Crystals. 2021. V. 11. P. 1257. https://www.doi.org/10.3390/cryst11101257
 - Himpsel F.J., Ortega J.E., Mankey G.J., Willis R.F. // Magn. Nanostructures, Adv. Phys. 1998. V. 47. P. 511. https://www.doi.org/10.1080/000187398243519
 
Arquivos suplementares
				
			
						
						
					
						
						
									






