Temperature and Energy Regularities of Ion-Beam Modification of Highly Oriented Pyrolytic Graphite

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The surface layer of highly oriented pyrolytic graphite after irradiation with argon ions with energies from 10 to 30 keV and fluences up to 1019 ions/cm2 in the target temperature range from room temperature to 600°C has been experimentally studied. The regularities of the irradiated layer surface change are compared with the known regularities of changes in the morphology and dimensions of pyrolytic graphites under irradiation with fast reactor neutrons. It is found that above the critical fluence of ion irradiation of highly oriented pyrolytic graphite, a sharp increase in the roughness amplitude R of the surface with columnar-acicular morphology occurs, which is several orders of magnitude greater than the projective range Rp of ions. It is shown that the temperature range corresponding to the maximum values of the amplitude of the surface roughness is close to the temperature range of intense radiation-induced deformation of graphite under neutron irradiation, leading to its secondary swelling. An assessment of the critical fluence of the formation of columnar-acicular morphology at argon ion irradiation energy of 10 to 30 keV is carried out. The measured levels of critical ion fluence, expressed as the number of radiation displacements, after their correction, taking into account the differences in the efficiency of radiation damage by neutrons and ions, can be used to assess the resistance of nuclear carbon materials using simulated ion irradiation.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Andrianova

Lomonosov Moscow State University; Moscow Aviation Institute

Хат алмасуға жауапты Автор.
Email: ov.mikhail@gmail.com
Ресей, Moscow; Moscow

A. Borisov

Lomonosov Moscow State University; Moscow Aviation Institute; STANKIN Moscow State University of Technology

Email: ov.mikhail@gmail.com
Ресей, Moscow; Moscow; Moscow

E. Vorobyeva

Lomonosov Moscow State University

Email: ov.mikhail@gmail.com
Ресей, Moscow

M. Ovchinnikov

Lomonosov Moscow State University

Email: ov.mikhail@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. Виргильев Ю.С., Гундорова Н.И., Куроленкин Е.И., Лебедев Ю.Н., Макарченко В.Г. Непрошиин Е.И., Попелюхина М.И., Харитонов А.В. // Изв. АН СССР. Сер. Неорг. матер. 1980. Т. 16. № 4. С. 669.
  2. Виргильев Ю.С., Гундорова Н.И., Куроленкин Е.И., Непрошин Е.И., Харитонов А.В. // Физ. и хим. обраб. матер. 1982. № 2. С. 3.
  3. Brocklehurst J.E, Kelly B.T. // Carbon. 1993. V. 31. № 1. P. 179. https://www.doi.org/10.1016/0008-6223(93)90170-F
  4. Виргильев Ю.С., Чугунова Т.К., Макарченко В.Г., Муравьева Е.В. // Изв. АН СССР. Сер. Неорг. матер. 1984. Т. 20. № 8. С. 1378.
  5. Virgil’ev Yu.S., Kalyagina I.P. // Inorg. Mater. 2004. V. 40. P. S33. https://www.doi.org/10.1023/B:INMA.0000036327. 90241.5a
  6. Was G.S., Jiao Z., Getto E., Sun K., Monterrosa A.M., Maloy S.A., Anderoglu O., Sencer B.H., Hackett M. // Scripta Materialia. 2014. V. 88. P. 33. https://www.doi.org/10.1016/j.scriptamat.2014.06.003
  7. Вас Г.С., Основы радиационного материаловедения. Металлы и сплавы. М.: Техносфера, 2014. 992 с.
  8. Liu D., Cherns D., Johns S., Y. Zhou, J. Liu, W.-Y. Chen, I. Griffiths, C. Karthik, M. Li, M. Kuball, J. Kane, W. Windes // Carbon. 2021. V. 173 P. 215. https://www.doi.org/10.1016/j.carbon.2020.10.086
  9. Telling R.H. Heggie M.I. // Phil. Mag. 2007. V. 87. P. 4797. https://www.doi.org/10.1080/14786430701210023
  10. Андрианова Н.Н., Борисов А.М., Виргильев Ю.С., Машкова Е.С., Севостьянова В.С., Шульга В.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2013. № 3. С. 103. https://www.doi.org/10.7868/S0207352813030050
  11. Andrianova N.N., Borisov A.M., Mashkova E.S., Sevostyanova V.S., Virgiliev Yu.S. // Nucl. Instrum. Meth. Phys. Res. B. 2013. V. 315. P. 117. https://www.doi.org/10.1016/j.nimb.2013.04.014
  12. Андрианова Н.Н., Борисов А.М., Виргильев Ю.С., Машкова Е.С., Севостьянова В.С. // Изв. РАН. Сер. физ. 2014. Т. 78. № 6. С. 723. https://www.doi.org/10.7868/S0367676514060052
  13. Mashkova E.S., Molchanov V.A. Medium-Energy Ion Reflection from Solids. Amsterdam: North-Holland, 1985. 444 p.
  14. Burchell T.D. Eatherly W.P. // J. Nucl. Mater. 1991. V. 179–181. P. 205.
  15. Платонов П.А., Штромбах Я.И., Карпухин В.И., Виргильев Ю.С., Чугунов О.К., Трофимчук Е.И. Действие излучения на графит высокотемпературных газоохлаждаемых реакторов. // Атомноводородная энергетика и технология: Сб статей. Вып. 6. М.: Энергоатомиздат, 1984. С. 77.
  16. Ferrari A.C., Robertson J. // Phys. Rev. B. 2000. V. 61. P. 14095. https://www.doi.org/10.1098/rsta.2004.1452
  17. Hbiriq Y., Ammar M. R., Fantini C., L. Hennet, M. Zaghrioui // Phys. Rev. B. 2023. V. 107. P. 134305. https://www.doi.org/10.1103/PhysRevB.107.134305
  18. Pimenta M.A., Dresselhaus G., Dresselhaus M.S., L. G. Cançado, A. Jorio, R. Saito //Phys. Chem. Chem. Phys. 2007. V. 9. № 11. P. 1276. https://www.doi.org/10.1039/B613962K
  19. Larouche N., Stansfield B.L. // Carbon. 2010. V. 48. № 3. P. 620. https://www.doi.org/10.1016/j.carbon.2009.10.002
  20. Kelly B.T. Dimensional changes and lattice parameter changes in graphite crystals due to interstitial atoms and vacancies. // Proc. 2nd Conference on Industrial Carbon and Graphite. Society of Chemical Industry. London. 1965. P. 483.
  21. Burchell T.D. // MRS Bull. 1997. V. 22. P. 29. https://www.doi.org/10.1557/S0883769400033005
  22. Жмуриков Е.И., Бубненков И.А., Дремов В.В., Самарин С.И., Покровский А. С., Харьков Д. В. Графит в науке и ядерной технике. Новосибирск: Изд-во СО РАН, 2013. 163 с.
  23. Andrianova N.N., Avilkina V.S., Borisov A.M., Mashkova E.S., Parilis E.S. // Vacuum. 2012. V. 86. P. 1630. https://www.doi.org/10.1016/j.vacuum.2011.12.010
  24. Andrianova N.N., Borisov A.M., Mashkova E.S., Virgiliev Yu.S. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 315. P. 240. https://www.doi.org/10.1016/j.nimb.2013.04.011
  25. Ehrhart P., Schilling W., Ullmaier H. // Encyclopedia Appl. Phys. 1996. V. 15. P. 429.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. SEM images of UPV-1T surface after irradiation with argon ions with energy 30 keV and fluence 1 × 1018 ions/cm2 at temperature 50 (a); 250 (b); 550°C (c).

Жүктеу (266KB)
3. Fig. 2. Raman spectra before (1) and after irradiation with 30 keV argon ions with a fluence of 1 × 1018 ions/cm-2 at 50 (2); 250 (3); 550°C (4). Solid thin lines show the decomposition of the spectra by Gauss and Lorentz functions.

Жүктеу (119KB)
4. Fig. 3. Dependence of the sample surface roughness amplitude R, the depth of implanted argon hAr according to [11] and the projective run Rp on the temperature of UPV-1T irradiation with Ar+ ions with energy 30 keV (a); dependences of the relative change in the graphite crystallite volume along the crystallographic directions a and c: ε = (Δxa / xa) / (Δxc / xc) on the temperature of neutron irradiation (dashed line) according to [20] and the rate of relative growth of pyrographite thickness v at low < 1021 neutron/cm2 (solid line) and high > 1021 neutron/cm2 neutron fluence (dashed line) according to [4] (b).

Жүктеу (183KB)
5. Fig. 4. Dependence of the sample surface roughness amplitude R, the depth of implanted argon hAr, according to [11], and the projective run Rp on the energy of Ar+ ions. The irradiation temperature was 250°C.

Жүктеу (81KB)

© Russian Academy of Sciences, 2025