The Role of Nonspecific Inflammation in the Development of Diabetic Polyneuropathy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus type 2 (DM2) and is associated with significant morbidity and mortality. The pathophysiological mechanisms leading to the development of DPN have not been fully studied and are still debatable. Currently, immune-mediated mechanisms of its development are being discussed. The aim of this study was to estimate the content of TNF-α in the blood serum of patients with DM2 complicated by DPN and to assess the significance of this factor in the development and progression of DPN. An open comparative study was conducted with the participation of 83 patients with DM2 of different duration. In patients with clinical manifestations of DPN and long-term course of DM2 (group 2), the level of TNF-α was significantly higher compared to patients with DM2 and duration of DPN less than 2 years, and both studied groups of patients with DM2 and DPN had a high level of TNF-α in comparison with the control group. The results obtained indicate a more aggressive immune-mediated process that develops with a longer duration of DM2 and makes a negative contribution to the functioning of the peripheral nerve fiber.

Sobre autores

L. Shchepankevich

Novosibirsk State Medical University; Federal Research Center of Fundamental and Translational Medicine; State Novosibirsk Regional Clinical Hospital

Email: nchjournal@gmail.com
Russia, Novosibirsk; Russia, Novosibirsk; Russia, Novosibirsk

M. Pervuninskaya

Novosibirsk State Medical University; Federal Research Center of Fundamental and Translational Medicine

Email: nchjournal@gmail.com
Russia, Novosibirsk; Russia, Novosibirsk

Bibliografia

  1. Maffi P., Secchi A. // Dev. Ophthalmol. 2017. V. 60. P. 1–5.
  2. Дедов И.И., Шестакова М.В., Викулова О.К. // Сахарный диабет. 2015. Т. 18. № 3. С. 5–23
  3. Callaghan B.C., Cheng H.T., Stables C.L., Smith A.L., Feldman E.L. // Lancet Neurol. 2012. V. 11. № 6. P. 521–534.
  4. Zubair M., Ahmad J. // Rev. Endocr. Metab. Disord. 2019. V. 20. № 2. P. 207–217.
  5. Kartika R.W., Alwi I., Suyatna F.D., Yunir E., Waspadji S., Immanuel S., Silalahi T., Sungkar S., Rachmat J., Reksodiputro M.H., Bardosono S. // Heliyon. 2021. V. 7. № 9. P. e07934
  6. Várkonyi T., Körei A., Putz Z., Martos T., Keresztes K., Lengyel C., Nyiraty S., Stirban A., Jermendy G., Kempler P. // Minerva Med. 2017. V. 108. № 5. P. 419–437.
  7. Wang Y., Shao T., Wang J., Huang X., Deng X., Cao Y., Zhou M., Zhao C. // Biomed. Pharmacother. 2021. V. 133. P. 110991.
  8. Cheng Y.C., Chiu Y.M., Dai Z.K., Wu B.N. // Cells. 2021. V. 10. № 10. P. 2688.
  9. Ristikj-Stomnaroska D., Risteska-Nejashmikj V., Papazova M. // Open Access Maced. J. Med. Sci. 2019. V. 7. № 14. P. 2267–2270.
  10. Mu Z.P., Wang Y.G., Li C.Q., Lv W.S., Wang B., Jing Z.H., Song X.J., Lun Y., Qiu M.Y., Ma X.L. // Mol. Neurobiol. 2017. V. 54. № 2. P. 983–996.
  11. Diaz M.M., Caylor J., Strigo I., Lerman I., Henry B., Lopez E., Wallace M.S., Ellis R.J., Simmons A.N., Keltner J.R. // Front. Pain Res (Lausanne). 2022. V. 3. P. 869215.
  12. Thakur V., Sadanandan J., Chattopadhyay M. // Int. J. Mol. Sci. 2020. V. 21. № 3. P. 881.
  13. Храмилин В.Н., Демидова И.Ю. // Эффективная фармакотерапия. 2020. Т. 16. № 12. С. 42–54.
  14. Attal N. // Rev. Neurol. (Paris). 2019. V. 175. № 1–2. P. 46–50.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Л.А. Щепанкевич, М.А. Первунинская, 2023