Estimation of the Maximum Migration Distance of a Finite Volume of Light Fluid in a Saturated Porous Medium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Flow of a light fluid through a porous medium saturated with another (heavy) fluid is studied. The one-dimensional formulation of the problem describing two-phase flow in a vertical isolated porous column is considered. Assuming that the volume of light liquid is finite, its maximum upward motion under the action of the buoyancy force is estimated. A simple method for approximate estimate of this migration distance is proposed. It is shown that it is determined by only a single dimensionless number (similarity criterion) over a wide range of fluid and porous medium parameters, and the effect of other parameters is small. The dependence of the maximum migration distance on the distingushed similarity criterion is calculated. The results of study can be useful in estimating the maximum distance over which the injected gas propagates from the well through a water-saturated formation.

Texto integral

Acesso é fechado

Sobre autores

A. Afanasyev

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: afanasyev@imec.msu.ru
Rússia, Moscow

E. Vedeneeva

Lomonosov Moscow State University

Email: el-vedeneeva@imec.msu.ru
Rússia, Moscow

I. Mikheev

Lomonosov Moscow State University

Email: afanasyev@imec.msu.ru
Rússia, Moscow

Bibliografia

  1. Bickle M.J. Geological carbon storage // Nat. Geosci. 2009. V. 2. № 12. P. 815–818. doi: 10.1038/ngeo687.
  2. Bachu S., Bonijoly D., Bradshaw J., Burruss R., Holloway S., Christensen N.P., Mathiassen O.M. CO2 storage capacity estimation: Methodology and gaps // Int. J. Greenh. Gas Control. 2007. V. 1. № 4. P. 430–443. doi: 10.1016/S1750-5836(07)00086-2.
  3. Afanasyev A., Penigin A., Dymochkina M., Vedeneeva E., Grechko S., Tsvetkova Yu., Mikheev I., Pavlov V., Boronin S., Belovus P., Osiptsov A. Reservoir simulation of the CO2 storage potential for the depositional environments of West Siberia // Gas Sci. Eng. 2023. V. 114. 204980. doi: 10.1016/j.jgsce.2023.204980.
  4. Huppert H.E., Neufeld J.A. The fluid mechanics of carbon dioxide sequestration // Annu. Rev. Fluid Mech. 2014. V. 46. P. 255–272. doi: 10.1146/annurev-fluid-011212-140627.
  5. Afanasyev A., Vedeneeva E., Grechko S. Scaling analysis for a 3-D CO2 plume in a sloping aquifer at a late stage of injection // J. Nat. Gas Sci. Eng. 2022. V. 106. 104740. doi: 10.1016/j.jngse.2022.104740.
  6. Afanasyev A., Vedeneeva E., Mikheev I. Monte Carlo simulation of the maximum migration distance of CO2 in a sloping aquifer // Gas Sci. Eng. 2023. V. 117. 205078. doi: 10.1016/j.jgsce.2023.205078.
  7. Killough J.E. Reservoir Simulation With History-Dependent Saturation Functions // Soc. Pet. Eng. J. 1976. V. 16. № 1. P. 37–48. doi: 10.2118/5106-pa.
  8. Buckley S.E., Leverett M.C. Mechanism of fluid displacement in sands // Trans. 1942. V. 146. P. 107-116. doi: 10.2118/942107-G.
  9. Баренблат Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. М.: Недра, 1984. 211 с.
  10. Афанасьев А.А., Султанова Т.В. Исследование нестационарного двухмерного вытеснения в пористой среде в автомодельной постановке // Изв. РАН МЖГ. 2017. № 4. С. 62-72. doi: 10.7868/S0568528117040065.
  11. Brooks R., Corey A. Hydraulic properties of porous media // Hydrology Papers, Colorado State University. 1964. № 3. 27 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic of the light fluid saturation distribution g at t = 0 and t → ∞. The force of gravity acts in the opposite direction to the x-axis.

Baixar (86KB)
3. Fig. 2. Schematic of relative phase permeability curves for drainage and impregnation conditions.

Baixar (165KB)
4. Fig. 3. Typical view of the function G (sg, sg,hy) when sg = sg,hy (drainage) and sg,hy = 1 (impregnation). The values of sg scaled according to (8) are used.

Baixar (129KB)
5. Fig. 4. Calculated distributions of sg (x) at successive time moments. At t ≥ 100, the flow parameters do not change practically with time. The bold curve shows the distribution of sg,hy at t >> 1.

Baixar (193KB)
6. Fig. 5. Calculated light fluid displacements g under different similarity criteria. The dots correspond to the results of numerical simulation, and the curves correspond to the approximate estimation of x*max.

Baixar (423KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024