INVESTIGATION OF THE INFLUENCE OF SELECTIVE LASER MELTING PARAMETRES ON THE STRUCTURE AND MECHANICAL PROPERTIES OF Al-Ce-Fe-Ni-Zr ALLOY

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Samples of Al-Ce-Fe-Ni-Zr alloy were obtained by selective laser melting at scanning speeds of 700–1900 mm/s. The structure of the samples is eutectic: a solid solution based on aluminum is located inside intermetallic cells. A coarser eutectic structure with coarser cells is observed at the cell boundary. The microhardness of the samples was HV0,1 = 115–170, the tensile strength was 370–475 MPa, and the ductility was 10–23%. Residual thermal stresses <250 MPa were observed in the samples. An increase in energy density contributed to a decrease in strength characteristics, an increase in elongation, and a decrease in residual stress.

Sobre autores

Yu. Ponkratova

People's Friendship University of Russia named after Patrice Lumumba

Email: ponkratova-yuyu@pfur.ru
Moscow, Russia

K. Bazaleeva

People's Friendship University of Russia named after Patrice Lumumba

Email: email@example.com
Moscow, Russia

A. Atanova

People's Friendship University of Russia named after Patrice Lumumba

Email: email@example.com
Moscow, Russia

I. Binkov

Bauman Moscow State Technical University

Email: email@example.com
Moscow, Russia

Bibliografia

  1. Белов, Н.А. Эвтектические сплавы на основе алюминия: новые системы легирования / Н.А. Белов, Е.А. Наумова, Т.К. Акопян. – М. : Издательский дом «Руда и Металлы», 2016. 256
  2. Белов, Н.А. Особенности микроструктуры и фазовый состав литейных сплавов системы Al-Ce-Fe-Ni-Zr / Н.А. Белов, В.С. Золоторевский // Рос. хим. журн. 2001. №5–5. С.15–22. –
  3. Rakhmonov, J.U. Solidification microstructure, aging evolution and creep resistance of laser powder-bed fused Al-7Ce-8Mg (wt.%) / J.U. Rakhmonov, D. Weiss, D.C Dunand // Additive Manufacturing. 2022. V.55. Art.102862.
  4. Hesselmann, M. Effect of precipitation-forming elements in a near-eutectic Al-Ce alloy for Laser Powder Bed Fusion / M. Hesselmann, D. Knoop, J. Epp, V. Uhlenwinkel, A. Hehl, A. Toenjes // Additive Manufacturing. 2022. V.57. Art.102959.
  5. Yang, Z. An additively manufactured heat-resistant Al-Ce-Sc-Zr alloy : Microstructure, mechanical properties and thermal stabilityPhase transformation and thermal stability of the laser powder bed fused high-strength and heat-resistant Al-Ce-Mg alloy / Z. Yang, Ch. Chen, D. Li, Y. Wu, Zh. Geng, V. Konakov, K. Zhou // Mater. Sci. Eng. A. 2023. V.872. Art.144965.
  6. Takata, N. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments / N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi // Mater. Sci. Eng. A. 2017. V.704. P.218–228.
  7. Takata, N. Anomalous strengthening by supersaturated solid solutions of selectively laser melted Al-Si-based alloys / N. Takata, M. Liu, H. Kodaira, A. Suzuki, M. Kobashi // Additive Manufacturing. 2020. V.33. Art.101152.
  8. Lui, M. Effect of annealing on anisotropic tensile properties of Al-12%Si alloy fabricated by laser powder bed fusion / M. Liu, T. Wada, A. Suzuki, N. Takata, M. Kobashi, M. Kato // Crystals. 2020. V.10. Art.1007.
  9. Qi, X. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature / X. Qi, N. Takata, A. Suzuki, M. Kobashi, M. Kato // J. Mater. Sci. Tech. 2022. V.97. P.38–53.
  10. Wang, W. Design of Al-Fe-Mn alloy for both high-temperature strength and sufficient processability of laser powder bed fusion / W. Wang, N. Takata, A. Suzuki, M. Kobashi, M. Kato // Additive Manufacturing. 2023. V.68. Art. 103524.
  11. Zhou, L. Microstructure and mechanical properties of Zr-modified aluminum alloy 5083 manufactured by laser powder bed fusion / L. Zhou, H. Hyer, Sh. Park, H. Pan, Yu. Bai, K.P. Rice, Y. Sohn // Additive Manufacturing. 2019. V.28. P.485–496.
  12. Lu, H. High-performance co-continuous Al-Ce-Mg alloy with in-situ nano-network structure fabricated by laser powder bed fusion / H. Lu, P. Peng, T. Feng, H. Gao, J. Ju, B. Wang, J. Wang, B. Sun // Additive Manufacturing. 2022. V.60. Art.103218.
  13. Chernyshikhin, S.V. Structure and mechanical properties of Al-Ce-Fe alloy synthesized by LPBF method / S.V. Chernyshikhin, E.L. Dzidziguri, L.V. Fedorenko, A.A. Gromov, K.B. Larionov, M.V. Lyange, N.A. Kharitonova, E.A. Naumova, D.Yu. Ozherelkov, I.A. Pelevin, S.O. Rogachev // Metals Mater. Intern. 2024. V.30. P.3184–3201.
  14. Wu, T. Microstructure and strengthening of Al-6Ce-3Ni-0,7Fe (wt.% alloy manufactured by laser powder-bed fusion / T. Wu, J.D. Poplawsky, L.F. Allard, A. Plotkowski, A. Shyam, D.C. Dunand // Additive Manufacturing. 2023. V.78. Art.103858.
  15. Sisco, K. A creep-resistant additively manufactured Al-Ce-Ni-Mn alloy / K. Sisco, R.A. Michi, S. Bahl, Y. Yang, J.D. Poplawsky, L.F. Allard, R. R. Dehoff, A. Plotkowski, A. Shyam // Acta Materialia. 2022. V.227. Art.117699.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025