Features of damage of surface layers of monocrystalline tungsten under the influence of powerful pulsed fluxes of helium ions and plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A study of the structural state and microhardness of the surface layer of monocrystalline tungsten samples after exposure to pulsed fluxes of He+ ions and helium plasma generated in the Plasma Focus facility “Vikhr′” (IMET RAS) has been carried out. Irradiation parameters: plasma power density of 108 W/cm2, ions power density 2•109 W/ cm2 with a duration of exposure to plasma and ions of 100 and 20 ns, respectively; number of pulses– 15; energy of helium ions ~100 keV, plasma temperature ~1 keV. It is shown that beam-plasma exposure in this mode results in surface melting and the appearance of a crystallographically oriented network of microcracks. In contrast to the intergranular cracking typical for polycrystalline samples, in W single crystals the formation of a network of microcracks occurs against the background of plastic flow along active sliding planes under the influence of thermal stresses arising at the cooling stage after crystallization of the melt. A fine-mesh structure with a cell size of 200 nm is formed in the solidified layer. The formation of unopened blisters and craters has been observed due to the release of helium from the surface layers. Using X-ray diffraction analysis it has been shown that irradiation in the implemented mode, accompanied by evaporation of a thin surface layer, helps to reduce distortions of the crystal lattice and structural defects of a technological nature that have arisen in the surface layer of single crystal samples at the stage of their mechanical processing in preparation for experiments. As a result of radiation-thermal melting and directional solidification of the W surface layer, a crystallization texture is formed in it in the direction determined by the crystallographic orientation of the sample surface exposed to radiation and coinciding with the temperature gradient vector. A slight (up to 15%) decrease in microhardness was found in the remelted surface layer of W single crystals, while a spread of Hμ values over the irradiated surface area has been observed.

About the authors

I. V. Borovitskaya

Baikov Institute of Metallurgy and Material Science RAS

Author for correspondence.
Email: symp@imet.ac.ru
Moscow

V. N. Pimenov

Baikov Institute of Metallurgy and Material Science RAS

Email: symp@imet.ac.ru
Moscow

S. A. Maslyaev

Baikov Institute of Metallurgy and Material Science RAS

Email: symp@imet.ac.ru
Moscow

A. S. Demin

Baikov Institute of Metallurgy and Material Science RAS

Email: symp@imet.ac.ru
Moscow

E. V. Morozov

Baikov Institute of Metallurgy and Material Science RAS

Email: symp@imet.ac.ru
Moscow

A. B. Mikhailova

Baikov Institute of Metallurgy and Material Science RAS

Email: symp@imet.ac.ru
Moscow

V. N. Serebryany

Baikov Institute of Metallurgy and Material Science RAS

Email: symp@imet.ac.ru
Moscow

A. S. Kolyanova

Baikov Institute of Metallurgy and Material Science RAS

Email: symp@imet.ac.ru
Moscow

G. G. Bondarenko

National Research University Higher School of Economics

Email: bondarenko_gg@rambler.ru
Moscow

A. I. Gaidar

Research Institute of Advanced Materials and Technologies

Email: niipmt@mail.ru
Moscow

E. V. Matveev

Research Institute of Advanced Materials and Technologies

Email: niipmt@mail.ru
Moscow

I. P. Sasinovskaya

Baikov Institute of Metallurgy and Material Science RAS

Email: symp@imet.ac.ru
Moscow

References

  1. Pitts, R.A. A full tungsten divertor for ITER : Physics issues and design status / R.A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A.S. Kukushkin, A. Loarte, M. Merola, A. Sashala Naik, R. Mitteau, M. Sugihara, B. Bazylev, P.C. Stangeby // J. Nuclear Mater. 2013. V.438. P.S48–S56.
  2. Diez, M. Overview of plasma-tungsten surfaces interactions on the divertor test sector in WEST during the C3 and C4 campaigns / M. Diez, M. Balden, S. Brezinsek, Y. Corre, N. Fedorczak, M. Firdaouss, E. Fortuna, J. Gaspar, J.P. Gunn, A. Hakola, T. Loarer, C. Martin, M. Mayer, P. Reilhac, M. Richou, E. Tsitrone, T. Vuoriheimo // Nuclear Mater. Energy. 2023. V.34. Art.101399.
  3. Gonderman, S. Effect of dual ion beam irradiation (helium and deuterium) on tungsten-tantalum alloys under fusion relevant conditions / S. Gonderman, J.K. Tripathi, J. Novakowski, T. Sizyuk, A. Hassanein // Nuclear Mater. Energy. 2017. V.12(C). P.210–230.
  4. Демин, А.С. Особенности применения установок Плазменный фокус в радиационном и космическом материаловедении / А.С. Демин, Е.В. Морозов, Н.А. Епифанов, С.А. Масляев, В.Н. Пименов // Перспективные материалы. 2024. №9. C.5–17. – (Demin, A.S. Features of the use of Plasma focus installations in radiation and space materials science / A.S. Demin, E.V. Morozov, N.A. Epifanov, S.A. Maslyaev, V.N. Pimenov // Perspective Mater. 2024. №9. P.5–17.)
  5. Seyedhabashi, M.M. Study of surface damage and hydrogen distribution in irradiated tungsten by protons in plasma focus device / M.M. Seyedhabashi, S. Shafiei, M.A. Tafreshi, B. Shirani Bidabadi // Vacuum. 2020. V.175. Art.109249.
  6. Moldabekov, Zh.M. Investigation of radiation effect on tungsten and molybdenum materials / Zh.M. Moldabekov, A.M. Zhukeshov, A.T. Gabdullina, A.U. Amrenova // Intern. J. Mathematics and Physics. 2023. V.14. №2. P.56–63.
  7. Roshan, M.V. High energy ion beams from the plasma focus / M.V. Roshan, N.V. Roshan, Seong Ling Yap // Applied Radiation and Isotopes. 2022. V.185. Art.110224.
  8. Roshan, M.V. High energy ions and energetic plasma irradiation effects on aluminum in a Filippov type plasma focus / M.V. Roshan, R.S. Rawat, A.R. Babazadeh, M. Emami, S.M. Sadat Kiai, R. Verma, J.J. Lin, A.R. Talebitaher, P. Lee, S.V. Springham // Applied Surface Sci. 2008. V.255. P.2461–2465.
  9. Грибков, В.А. Установка «Вихрь» типа «Плазменный фокус» для диагностики радиационно-термической стойкости материалов, перспективных для термоядерной энергетики и аэрокосмической техники / В.А. Грибков, И.В. Боровицкая, А.С. Демин, Е.В. Морозов, С.А. Масляев, В.Н. Пименов, А.В. Голиков, А.К. Дулатов, Г.Г. Бондаренко, А.И. Гайдар // Приборы и техника эксперимента. 2020. №1. C.75–83. – (Gribkov, V.A.The Vikhr Plasma Focus device for diagnosing the radiation-thermal resistance of materials intended for thermonuclear energy and aerospace engineering / V.A. Gribkov, I.V. Borovitskaya, A.S. Demin, E.V. Morozov, S.A. Maslyaev, V.N. Pimenov, A.V. Golikov, A.K. Dulatov, G.G. Bondarenko, A.I. Gaydar // Instruments and Experimental Techniques. 2020. №1. P.68–76.)
  10. Грибков, В.А. Исследование повреждаемости материалов с использованием установки Плазменный фокус «Вихрь» / В.А. Грибков, И.В. Боровицкая, А.С. Дёмин, С.А. Масляев, Е.В. Морозов, В.Н. Пименов, Г.Г. Бондаренко, А.И. Гайдар // Зав. лаб. Диагностика материалов. 2019. Т.85. №8. C.29–36. – (Gribkov, V.A. Investigation of damage to materials using the Vikhr Plasma Focus device / V.A. Gribkov, I.V. Borovitskaya, A.S. Demin, S.A. Maslyaev, E.V. Morozov, V.N. Pimenov, G.G. Bondarenko, A.I. Gaidar // Indust. Lab. Diagnostics of Mater. 2019. V. 85. №8. P.29–36.)
  11. Бородкина, М.М. Рентгенографический анализ текстуры металлов и сплавов / М.М. Бородкина, Э.Н. Спектор. – М. : Металлургия, 1981. 272 с. – (Borodkina, M.M. Radiographic analysis of the texture of metals and alloys / M.M. Borodkina, E.N. Spector. – M. : Metallurgy, 1981. 272 p.).
  12. Altomare, A. QUALX2.0 : a qualitative phase analysis software using the freely available database POW_COD / A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi // J. Appl. Cryst. 2015. V.48. P.598–603.
  13. Yovanovich, M. Micro and macro hardness measurements, correlations, and contact models. 44th AIAA aerospace sciences meeting and exhibit / M. Yovanovich // 2006. V.979. P.1–28. https://doi.org/10.2514/6.2006-979
  14. Ram Niranjana. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device / Ram Niranjana, R.K. Rout, R. Srivastava, Y. Chakravarthy, P. Mishra, T.C. Kaushik, Satish C. Gupta // Applied Surface Sci. 2015. V.355. P.989–998.
  15. Морозов, Е.В. Эволюция состояния поверхности вольфрама при воздействии экстремальных потоков энергии в установках Плазменный фокус / Е.В. Морозов, С.А. Масляев, В.Н. Пименов, В.А. Грибков, Е.В. Демина, И.П. Сасиновская, В.П. Сиротинкин, Г.Г. Бондаренко, А.И. Гайдар // Перспективнае материалы. 2015. №10. C.32–45. – (Morozov, E.V. Evolution of the state of the tungsten surface under the influence of extreme energy fluxes in Plasma focus installations / E.V. Morozov, S.A. Maslyaev, V.N. Pimenov, V.A. Gribkov, E.V. Demina, I.P. Sasinovskaya, V.P. Sirotinkin, G.G. Bondarenko, A.I. Gaidar // Perspective Mater. 2015. №10. C.32–45.)
  16. Боровицкая, И.В. Изменение структуры и микротвердости тантала в условиях импульсных пучково-плазменных воздействий разной интенсивности / И.В. Боровицкая, В.Н. Пименов, С.А. Масляев, Е.В. Демина, А.С. Демин, Е.В. Морозов, Н.А. Епифанов, А.Б. Михайлова, С.В. Латышев, Г.Г. Бондаренко, Е.В. Матвеев, А.И. Гайдар // Металлы. 2024. №3. C.82–93. – (Borovitskaya, I.V. Changes in the structure and microhardness of tantalum under conditions of pulsed beam-plasma effects of varying intensity / I.V. Borovitskaya, V.N. Pimenov, S.A. Maslyaev, E.V. Demina, A.S. Demin, E.V. Morozov, N.A. Epifanov, A.B. Mikhailova, S.V. Latyshev, G.G. Bondarenko, E.V. Matveev, A.I. Gaidar // Russian Metallurgy. 2024. №3. P.82–93.)
  17. Боровицкая, И.В. Повреждение поверхностного слоя вольфрама при облучении стационарными ионными и импульсными пучково-плазменными потоками гелия / И.В. Боровицкая, В.Н. Пименов, С.Н. Коршунов, А.Н. Мансурова, С.А. Масляев, А.С. Демин, Е.В. Морозов, Н.А. Епифанов, А.Б. Михайлова, С.В. Латышев, Г.Г. Бондаренко, А.И. Гайдар, Е.В. Матвеев, И.С. Монахов // Вопр. атомной науки и техники. Сер. Термоядерный синтез. 2024. Т.47. №3. C.79–92. – (Borovitskaya, I.V. Damage to the surface layer of tungsten during irradiation by stationary ion and pulsed beam-plasma flows of helium / I.V. Borovitskaya, V.N. Pimenov, S.N. Korshunov, A.N. Mansurova, S.A. Maslyaev, A.S. Demin, E.V. Morozov, N.A. Epifanov, A.B. Mikhailova, S.V. Latyshev, G.G. Bondarenko, A.I. Gaidar, E.V. Matveev, I.S. Monakhov // Problems of Atomic Sci. Tech. Ser. Termonuclear Fusion. 2024. V.47. №3. P.79–92.)
  18. Боровицкая, И.В. Влияние импульсных пучково-плазмнных воздействий на структурные характеристики и механические свойства поверхностного слоя в сплаве Инконель 718 / И.В. Боровицкая, А.С. Демин, О.А. Комолова, С.В. Латышев, С.А. Масляев, А.Б. Михайлова, И.С. Монахов, Е.В. Морозов, В.Н. Пименов, Г.Г. Бондаренко, А.И. Гайдар, И.А. Логачев, Е.В. Матвеев // Металлы. 2023. №4. C.34–42. – (Borovitskaya, I.V. Effect of pulsed plasma beams on the structure and mechanical properties of the surface layer in an Inconel 718 alloy / I.V. Borovitskaya, A.S. Demin, O.A. Komolova, S.V. Latyshev, S.A. Maslyaev, A.B. Mikhailova, I.S. Monakhov, E.V. Morozov, V.N. Pimenov, G.G. Bondarenko, A.I. Gaidar, I.A. Logachev, E.V. Matveev // Russian Metallurgy (Metally). 2023. №7. P.891–898.)
  19. Боровицкая, И.В. Структурные изменения поверхности ванадия под воздействием импульсных потоков высокотемпературной дейтериевой плазмы и ионов дейтерия / И.В. Боровицкая, В.Н. Пименов, В.А. Грибков, М. Падух, Г.Г. Бондаренко, А.И. Гайдар, В.В. Парамонова, Е.В. Морозов // Металлы. 2017. №6. C.30–37. – (Borovitskaya, I.V. Structural changes in the vanadium sample surface induced by pulsed high-temperature deuterium plasma and deuterium ion fluxes / I.V. Borovitskaya, V.N. Pimenov, V.A. Gribkov, M. Padukh, G.G. Bondarenko, A.I. Gaidar, V.V. Paramonova, E.V. Morozov // Russian Metallurgy (Metally). 2017. №11. P.928–935.)
  20. Боровицкая, И.В. Воздействие импульсных потоков азотной плазмы и ионов азота на структуру и механические свойства ванадия / И.В. Боровицкая, В.Я. Никулин, Г.Г. Бондаренко, А.Б. Михайлова, П.В. Силин, А.И. Гайдар, В.В. Парамонова, Е.Н. Перегудова // Металлы. 2018. №2. C.54–64. – (Borovitskaya, I.V. Effect of pulsed nitrogen plasma and nitrogen ion fluxes on the structure and mechanical properties of vanadium / I.V. Borovitskaya, V.Ya. Nikulin, G.G. Bondarenko, A.B. Mikhailova, P.V. Silin, A.I. Gaidar, V.V. Paramonova, E.N. Peregudova // Russian Metallurgy (Metally). 2018. №3. P.266–275.)
  21. Бондаренко, Г.Г. Основы материаловедения / Г.Г. Бондаренко, Т.А. Кабанова, В.В. Рыбалко – М. : Изд-во БИНОМ. Лаборатория знаний, 2014. 760 с. – (Bondarenko, G.G. Fundamentals of materials science / G.G. Bondarenko, T.A. Kabanova, V.V. Rybalko – M. : BINOM Publishing House. Laboratory of Knowledge. 2014. 760 p.).
  22. Миркин, Л.И. Справочник по рентгеноструктурному анализу поликристаллов / Л.И. Миркин ; под ред. Я.С. Уманского. – M. : Гос. Изд-во физико-математических литературы, 1961. 862 с. – (Mirkin, L.I. Handbook of X-ray diffraction analysis of polycrystals / L.I. Mirkin ; ed. by Ya.S. Umansky – M. : State Publishing House of Phys.-Math. Literature, 1961. 862 p.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences