On Some Properties of Solutions of Systems of Linear Difference Equations with Periodic Right-Hand Sides
- Authors: Ignat'ev A.O1
 - 
							Affiliations: 
							
- Institute of Applied Mathematics and Mechanics, Donetsk, Russia
 
 - Issue: Vol 59, No 4 (2023)
 - Pages: 494-500
 - Section: Articles
 - URL: https://vietnamjournal.ru/0374-0641/article/view/649384
 - DOI: https://doi.org/10.31857/S0374064123040064
 - EDN: https://elibrary.ru/ANEVSL
 - ID: 649384
 
Cite item
Abstract
We consider homogeneous and inhomogeneous systems of linear difference equations with coefficients that are 
-periodic functions of discrete time. For homogeneous systems, sufficient conditions for the existence of periodic and almost periodic solutions are obtained. For inhomogeneous systems, it is shown that a necessary and sufficient condition for the existence of an N-periodic solution is the existence of a bounded solution. Necessary and sufficient conditions for theN orthogonality of the fundamental matrix of the homogeneous system are established. Illustrative examples are given.
About the authors
A. O Ignat'ev
Institute of Applied Mathematics and Mechanics, Donetsk, Russia
							Author for correspondence.
							Email: aoignat@mail.ru
				                					                																			                												                								Донецк						
References
- Chen S., Liu X. Stability analysis of discrete-time coupled systems with delays // J. of the Franklin Institute. 2020. № 357. P. 9942-9959.
 - Игнатьев А.О. Метод функций Ляпунова в системах разностных уравнений: устойчивость относительно части переменных // Дифференц. уравнения. 2022. Т. 58. № 3. С. 407-415.
 - Elaydi S. An Introduction to Difference Equations. New York, 2005.
 - Lakshmikantham V., Trigiante D. Theory of Difference Equations: Numerical Methods and Applications. New York, 2002.
 - Agarwal R., Popenda J. Periodic solutions of first order linear difference equations // Math. Comput. Modelling. 1995. V. 22. № 1. P. 11-19.
 - Савченко А.Я., Игнатьев А.О. Некоторые задачи устойчивости неавтономных динамических систем. Киев, 1989.
 - Giang D.V. Linear difference equations and periodic sequences over finite fields // Acta Math. Vietnam. 2016. V. 41. № 1. P. 171-181.
 - Hasil P., Vesely M. Limit periodic homogeneous linear difference systems // Appl. Math. Comput. 2015. V. 265. P. 958-972.
 - Janglajew K., Schmeidel E. Periodicity of solutions of nonhomogeneous linear difference equations // Adv. Difference Equat. 2012. V. 195.
 - Agarwal R. Difference Equations and Inequalities. Theory, Methods, and Applications. V. 228. New York, 2000.
 - Agarwal R., Wong P. Advanced Topics in Difference Equations. Dordrecht, 1997.
 - Gasull A. Difference equations everywhere: some motivating examples // Difference Equations, Discrete Dynamical Systems and Applications / Eds. S. Elaydi et al. 2019. V. 287. P. 129-167.
 - Elaydi S., Sacker R. Periodic difference equations, population biology and the Cushing-Henson conjectures // Math. Biosci. 2006. V. 201. № 1-2. P. 195-207.
 - Elaydi S., Sacker R. Global stability of periodic orbits of non-autonomous difference equations and population biology // J. Differ. Equat. 2005. V. 208. № 1. P. 258-273.
 - Ignatyev A.O., Ignatyev O.A. On the stability of discrete systems // Integral Methods in Science and Engineering. Boston, 2006. P. 105-116.
 - Ignatyev A.O., Ignatyev O.A. On the stability in periodic and almost periodic difference systems // J. Math. Anal. Appl. 2006. V. 313. № 2. P. 678-688.
 - Zhang S., Liu P., Gopalsamy K. Almost periodic solutions of nonautonomous linear difference equations // Appl. Analysis: an Int. J. 2002. V. 81. № 2. P. 281-301.
 - Деменчук А.К. О сильно нерегулярных периодических решениях линейного дискретного уравнения первого порядка // Весцi НАН Беларусi. Сер. фiз.-мат. навук. 2020. Т. 56. № 1. С. 30-35.
 - Popenda J., Schmeidel E. Asymptotically periodic solution of some linear difference equations // Facta Univ. Ser. Math. Inform. 1999. V. 14. P. 31-40.
 - Clark M.E., Gross L.J. Periodic solutions to nonautonomous difference equations // Math. Biosci. 1990. V. 102. № 1. P. 105-119.
 - Vesely M. Construction of almost periodic sequences with given properties // Electron. J. Differ. Equat. 2008. V. 126.
 - Vesely M. Almost periodic homogeneous linear difference systems without almost periodic solutions // J. Difference Equat. Appl. 2012. V. 18. № 10. P. 1623-1647.
 - Massera J.L. The existence of periodic solutions of systems of differential equations // Duke Math. J. 1950. V. 17. № 4. P. 457-475.
 - Makay G. On some possible extensions of Massera's theorem // Electronic J. of Qualit. Theory of Differ. Equat. 2000. V. 16. P. 1-8.
 - Zubelevich O. A note on theorem of Massera // Regul. Chaotic Dyn. 2006. V. 11. № 4. P. 475-481.
 - Li Y., Lin Z., Li Z. A Massera type criterion for linear functional differential equations with advanced and delay // J. Math. Anal. Appl. 1996. V. 200. P. 717-725.
 - Corduneanu C. Almost Periodic Functions. New York, 1989.
 - Левитан Б.М. Почти периодические функции. М., 1953.
 - Мишина А.П., Проскуряков И.В. Справочная математическая библиотека. Высшая алгебра. М., 1965.
 - Vleck F.S.V. A note on the relation between periodic and orthogonal fundamental solutions of linear systems // Amer. Math. Monthly. V. 71. № 4. P. 406-408.
 
Supplementary files
				
			
					
						
						
						
						
									



