A novel type of silicone rubber-based scintillator for extensive air showers particle detection

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We proposed to use new inexpensive specialized scintillators optimized for different types of particles in experiments of detecting extensive air showers. The scintillators developed in our laboratory are based on locally produced phosphors immersed in a compound — optically transparent silicone rubber, so we called them "silicone rubber-based scintillators". Some of the first versions of such scintillators are already successfully used to register thermal neutrons and cascade particles in a number of Extensive Air Showers arrays created with our participation. We show here preliminary results of the development of specialized scintillators of this type to record different particles: fast neutrons, muons, electrons and gamma rays.

Sobre autores

D. Kuleshov

Institute for Nuclear Research of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: den_kuleshov481@mail.ru
Moscow, Russia

Yu. Stenkin

Institute for Nuclear Research of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Moscow, Russia

K. Kurinov

Institute for Nuclear Research of the Russian Academy of Sciences

Moscow, Russia

I. Maliy

Institute for Nuclear Research of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Moscow, Russia

Bibliografia

  1. Asada T., Masuda M., Okumura M., and Okuma J. // J. Phys. Soc. Japan. 1959. V. 14. P. 1766.
  2. Carel W.E. van Eijk // Nucl. Instrum. Meth. A. 2001. V. 460. No. 1. P. 1.
  3. Yamamoto S., and Tomita H. // Appl. Radiat. Isotop. 2021. V. 168. Art. No. 109527.
  4. Stenkin Yu.V. // Nuclear Track Detectors: Design, Methods and Applications. Ch. 10. Nova Sci. Publ., 2010. P. 253.
  5. Громушкин Д.М., Волченко В.И., Петрухин A.A. и др. // Ядерн. физика. 2015. Т. 78. С. 379
  6. Кузьменкова П.С., Громушкин Д.М., Третьякова Т.Д., Шульженко И.А. // Ядерн. физ. и инжиниринг. 2021. Т. 12. № 1. С. 36
  7. Щеголев О.Б., Алексеенко В.В., Кулешов Д.А. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 548
  8. Стенькин Ю.В., Алексеенко В.В., Кулешов Д.А. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 758
  9. Лагуткина А.А., Джаппуев Д.Д., Куджаев А.У. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 7. С. 1048
  10. https://luminophor.ru/catalog/luminofory/radiolyuminofory/stsintillyatory.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025